
Reference Manual
Contents
Chapter 1 Introduction

Manual Conventions
Syntax Conventions
Printing Conventions

Chapter 2 Definitions
A        B        C        D        E        F        G        H        I        J        K        L        M
N        O        P        Q        R        S        T        U      V      W      X        Y        Z

Chapter 3 Statement Summary

Chapter 4 Keyword Dictionary
A        B        C        D        E        F        G        H        I        J        K        L        M
N        O        P        Q        R        S        T        U      V      W      X        Y        Z

Appendix A Error Codes
 1-25 26-49 50-99 100-149

150-299 300-459 460-699 700-
899
 900-999 2000-2099

Appendix B ASCII Code Chart

Other Manuals User's Guide      Installing and Using Manual

Copyright ® 1988-1998 by TransEra Corp.

Definitions
A

Angle
Array
Array Name
ASCII file type

Definitions
B

BDAT file type
Boolean Expression

Definitions
C

COM Block
COM Block Name
COMPLEX
Context

Definitions
D

Device Selector
DOS file type

Definitions
E

Event

Definitions
F

File Specifier
Full Array Specifier
Function Name

Definitions
I

I/O PATH
Integer
Integer Array
Interface Select Code

Definitions
L

Line Label
Line Number
Local Variable

Definitions
M

Matrix

Definitions
N

Numeric Array
Numeric Array Element
Numeric Constant
Numeric Expression
Numeric Name

Definitions
O

Ordinary file

Definitions
P

Path Specifier
Pen Number
Pipe Specifier
Precedence
Primary Address
Priority
PROG file type

Definitions
R

Real
Record Number

Definitions
S

Scientific Notation
Signal Number
Softkey Macro
String
String Array
String Array Element
String Expression
String Literal
String Name
Sub-string
Subprogram Name
Subscript

Definitions
U

UNIX file type

Definitions
V

Variable Name
Vector
Volume Label
Volume Specifier

Chapter 1
Introduction

High Tech Basic (HTBasic) is a technical programming language compatible
with Hewlett Packard's "Rocky Mountain" BASIC for HP 9000 Series 200/300
computers. It has extensive graphics, instrument control capabilities and
interactive programming aids to speed program development. It is designed
to offer powerful features and ease of use to engineers, scientists and other
professionals having a range of programming experience from novice to
expert.

Three manuals are provided with HTBasic: the User's Guide, the Installing and
Using manual and this Reference Manual.    The Reference Manual contains the
following chapters:

•    Chapter 1, Introduction
•    Chapter 2, Definitions
•    Chapter 3, Statement Summary
•    Chapter 4, Keyword Dictionary
•    Appendix A, Errors
•    Appendix B, ASCII Code Chart

Chapter 1, "Introduction," is this chapter and introduces the manual layout. It
contains conventions used throughout the manual and syntax rules used in
Chapter 4.

Chapter 2, "Definitions," defines general terms and common syntactical units.

Chapter 3, "Statement Summary," lists all the HTBasic statements and
indicates which can be executed from the keyboard, stored in a program, and
included in an IF...THEN statement.

Chapter 4, "Keyword Dictionary," lists in dictionary fashion the HTBasic
keywords. Each entry includes a syntax diagram, sample statements, a
description of the keyword's functionality and related keywords.

Appendix A, "Errors," lists each error number, cause and in some cases,
possible solutions.

Appendix B, "ASCII Code Chart," contains ASCII, decimal and hexadecimal
values and IEEE-488 commands and addresses.

Manual
Conventions

The following is an example "Keyword Dictionary" entry which explains the
rules and conventions used throughout this manual.

KEYWORD
This line tells what the KEYWORD does.
Syntax: This line defines the syntax.

where: These lines, when present, further define parts of the syntax.

Sample: These lines give samples using the KEYWORD.

Description:
These paragraphs describe in greater detail how the KEYWORD is used.
Several conventions are used to aid your understanding of the keyword. All
terms used in the syntax definition are defined in one of two places.
Commonly used terms, such as "numeric-expression," are defined at the
beginning of the Reference Manual. Other terms are defined immediately after
they are used, in the lines following the "where:".

See Also:
LISTS OTHER KEYWORDS RELATED TO THIS ONE.

Syntax
Conventions

The key to understanding the syntax definitions is understanding the
punctuation used in the definition. Braces and vertical bars are used to denote
a list of choices. A construct like this:

{ ON | OFF }

means you must specify ON or OFF but not both. Do not enter the braces or
the vertical bar. Square brackets are used to denote optional items. For
example,

BEEP [frequency, duration]

means that BEEP may be entered alone or with the frequency and duration.
Ellipses (three dots "...") are used to show that the preceding item can be
optionally repeated any number of times. For example, in the definition

ALLOCATE item [,item...]

",item" can be optionally repeated one or more times. Single quotes, "'", are
used around the square bracket symbols when they should be entered
literally, instead of interpreted as optional item symbols. For example,

DIM string-name$ '['length']'

means that the bracket characters are part of the statement to dimension a
string. (See the example below.)

Words in lower-case, like "length" in the example above, are defined either
later in the syntax definition itself or in the definitions at the start of the
Reference Manual. Words in uppercase are keywords and should be entered
exactly as shown. Keywords must be separated from one another by spaces.
All other symbols should be entered exactly as shown. Spaces have been
added in some definitions to improve readability.

Printing
Conventions

Several printing conventions are used in this manual. In descriptions,
keywords are shown in BOLD, UPPERCASE letters. (In other places, keywords
are merely shown in uppercase.) Examples that show exactly what you should
type or what the computer displays are shown in a fixed width font, such as
10 DIM A$[50]

Key names, IEEE-488 bus commands and operating system commands are
shown in all uppercase, for example: ENTER.

At the top of each left-hand page, the first keyword to start on that page is
given. At the top of each right-hand page, the last keyword to start on the
page is given.

Chapter 2
Definitions
This chapter contains definitions of 'Rocky Mountain BASIC' general terms and syntactical
units.

Definition
Angle

Angles can be specified in radians or degrees. When specifying angles for
graphic statements, the angle is relative to the positive x axis. Positive angles
specify counter-clockwise movement about the origin.

Definition
Array

An array is a multi-dimensional ordered set of values. Each member of the set
is called an array element. All the members of the set have the same simple
data type which can be integer, real, complex, or string. The dimension of the
set is called the RANK of the array. Arrays may have a rank from one to six.

Local array variables are declared using INTEGER, REAL, COMPLEX and DIM.
ALLOCATE can be used to dynamically declare an array. COM can be used to
declare a global array. Consult these entries in Chapter 4, the "Keyword
Dictionary," to learn how to declare array variables. OPTION BASE is available
to change the default lower bound for indices.

Definition
Array Name

The rules for naming an array are the same as for a variable (see Variable
Name). Array variables and simple variables share the same name space.
Thus, you cannot have a simple variable and an array variable with the same
name in the same context.

Definition
ASCII file type

In the HTBasic manual set, the term ASCII file refers to a LIF ASCII file, not a
DOS ASCII or UNIX ASCII ordinary file. A LIF ASCII file is a typed file which
contains string items preceded by an item length, and followed by a pad byte
when the string length is odd. Do not confuse the terms DOS ASCII, UNIX ASCII
and LIF ASCII. A DOS ASCII file is an ordinary file which contains only printable
characters and the end of each line is marked with a carriage return and line
feed. A UNIX ASCII file is an ordinary file which contains only printable
characters and the end of each line is marked with a line feed. HTBasic can
read and write any of these file types. See CREATE and CREATE ASCII in
Chapter 4, the "Keyword Dictionary."

Definition
BDAT file type

BDAT files are used to hold binary data and can be used to exchange data with
HP BASIC. See CREATE BDAT in Chapter 4, the "Keyword Dictionary." Ordinary
(DOS, NT or UNIX) files can also be used to hold binary data.

Definition
Boolean Expression

A boolean expression is simply a numeric expression whose result is tested for
zero/non-zero. If the result is zero, the expression is considered FALSE. If the
result is non-zero, the expression is considered TRUE.

Definition
COM Block

A COM block is a set of one or more variables that may be shared (in
"COMmon"), among one or more contexts. Each COM block is uniquely
identified with a name (although one block is allowed to be nameless). COM
block names are explained below.

The value of a COM variable is global in lifetime, however, the name of a COM
variable is not global. To access COM variables, a context must include a COM
statement which identifies the COM block and gives the names by which the
variables will be known in that context. Thus, each context can give a different
name to the same COM variable. COM variables are hidden from all contexts
which do not include a COM statement accessing that COM block. See COM in
Chapter 4, the "Keyword Dictionary."

Definition
COM Block Name

Rules for naming a COM block are the same as for a variable (see Variable
Name).

Definition
COMPLEX

"Complex" is a data type. Other data types are integer, real, string, and I/O
path. The Complex data type is a subset of all rational numbers. The particular
subset depends on your computer. Most computers, including the IBM PC, Sun
SPARC and HP PA workstations use IEEE Std 754-1985 for Binary Floating point
numbers. This gives the Complex data type an approximate range of 2E-308
to 1E+308 and 15 decimal digits of precision. Both positive and negative
numbers are represented. MINREAL and MAXREAL are functions which return
the smallest and largest positive real numbers. The range for negative
numbers is -MINREAL to -MAXREAL.

Use the COMPLEX statement to declare local complex variables and the COM
statement to declare global complex variables. Use the ALLOCATE statement
to declare a local complex variable which can be DEALLOCATEd dynamically. If
a variable is not declared, it will automatically be declared local and real
unless CONFIGURE DIM OFF is used.

Definition
Context

A context is a program unit with its own environment, including local
variables, which can be called recursively by other contexts, and can pass
arguments, either by reference or by value. There are four types of contexts:
1) main context, 2) subprogram context, 3) user defined function, 4) CSUB
context.

The main context begins with the first line of the program and ends with the
program line containing the "END" statement. The main context is started by
a RUN command.

A subprogram context begins with a SUB statement and ends with a SUBEND
statement. It is called with a CALL statement and terminates with a SUBEND
or SUBEXIT statement. Arguments can be passed to a subprogram.

A user defined function begins with a DEF statement and ends with an FNEND
statement. It is called from within a numeric or string expression by
referencing its name. It terminates and returns a value with a RETURN
statement. The expression then continues to evaluate, using the value
returned in place of the function reference. Arguments can be passed to a
function.

A CSUB is a compiled subprogram created with special tools outside of
HTBasic. It is loaded into memory with the LOADSUB statement and removed
from memory with the DELSUB statement. It is called with a CALL statement.

Definition
Device Selector

A device selector is a number which specifies a device. It specifies the
interface select code (ISC) to which a device is connected. If more than one
device can be connected to that interface (i.e., the GPIB interface), then the
address of the device is appended after the ISC. It can be just a primary
address or a primary address and several secondary addresses. Each address
is specified with two digits; thus 1 is specified as 01. A device selector can be
up to 15 digits.

Several examples follow: If a printer has a primary address of 1 and is
connected to a GPIB interface with ISC 7, then the device selector for the
printer is 701. If an instrument is connected to the RS-232 interface with ISC
9, then the device selector for the instrument is 9. If a GPIB plotter has a
primary address of 2, a secondary address of 11 and is connected to a GPIB
interface with ISC 14, then the device selector for the plotter is 140211.

Definition
DOS file type

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF
ASCII, BDAT, BIN and PROG. In a CAT listing ordinary files are listed as "DOS"
files by the DOS versions of HTBasic. Other versions leave the file type column
blank for ordinary files. Unlike typed files, no special header or other
embedded information is placed in the file. Under DOS, an ordinary file with
FORMAT ON is compatible with all programs that support DOS ASCII files. See
CREATE in Chapter 4, the "Keyword Dictionary."

Definition
Event

An event is the occurrence of an action or condition which can be trapped by
an ON statement that directs program execution to a service routine. See ON
in Chapter 4, the "Keyword Dictionary."

Definition
File Specifier

A file specifier identifies a file. Legal file specifiers depend on the operating
system and are summarized here. Consult your operating system manuals for
complete rules.

Under DOS, Windows and NT, a file specifier consists of an optional drive
letter, an optional path, a filename and an optional filename extension
combined as follows:

d:\path\filename.ext

The drive letter specifies the disk drive, A, B, C, etc. If it is present, it must be
followed by a colon, ":". The path is a series of one or more directory names,
separated by the backslash character, "\", leading from the root directory to
the file in question. A legal directory name follows the same rules as a legal
filename.

For the FAT file system used by DOS, Windows and NT, the filename consists
of 1 to 8 characters. The extension consists of a period, "." followed by 1 to 3
characters. Case is ignored by DOS and Windows and when a new filename is
specified all lowercase characters are converted to uppercase. Some
characters are not legal in a filename. A period is only legal between the
filename and the extension. Characters less than CHR$(32) are not legal. The
characters in the following list are also illegal: "*+,/:;<=>?[\]|.

For the NTFS file system, the filename consists of 1 to 256 characters,
including one or more extensions. Case is ignored by NT although when a new
filename is specified, case is preserved for display in a directory listing. Some
characters are not legal in a filename. Characters less than CHR$(31) are not
legal. The characters in the following list are also illegal: "*/:<>?\|. Trailing
spaces are ignored; elsewhere spaces are acceptable.

Under UNIX, a file specifier consists of an optional path and a filename:

/path/filename

The path is a series of one or more directory names, separated by the slash
character, "/", leading from the root directory to the file in question. A legal
directory name follows the same rules as a legal filename. The filename
consists of 1 to 255 characters. (Some flavors of UNIX limit the length to 14
characters.) HTBasic removes embedded spaces in a filename and UNIX does
not allow embedded nulls, CHR$(0), or slash characters. While all other
characters are valid, it is a good idea to avoid characters less than CHR$(32)
and these characters: "'-<>[\]. If a filename begins with a dot, ".", it is not
listed by the CAT statement.

Definition
Full Array Specifier

A full array specifier is the symbol "(*)" and is used to reference an entire
array rather than an individual element.

Definition
Function Name

The rules for naming a function are the same as for a variable (see Variable
Name). A User Defined Function is one of several types of contexts (see
Context).

Definition
I/O PATH

"I/O path" is a data type. Other data types are integer, real, complex    and
string. An I/O path is implicitly declared whenever you use it in a program. It
must be initialized with the ASSIGN statement before it is used. Input and
Output statements use an I/O path to specify the entity (device, file, pipe,
buffer, etc.) that the computer communicates with during the I/O operation.
When an input/output statement does not explicitly involve an I/O path, one is
created internally, used for the duration of the statement and then discarded.

Definition
Integer

"Integer" is a data type. Other data types are I/O path, real, complex, and
string. Integers are whole numbers (-1, 35) as opposed to real numbers that
can have fractional parts (1.7, 2.34). Integers are stored in two bytes and
have a range of -32768 to +32767. Integer operations are faster and integers
take less space to store.

Use the INTEGER statement to declare local integer variables and the COM
statement to declare global integer variables. Use the ALLOCATE statement to
declare a local integer variable which can be DEALLOCATEd dynamically. If a
variable is not declared, it will automatically be declared local and real unless
CONFIGURE DIM OFF is used.

Definition
Integer Array

Each element of an array (see Array) is an integer declared with INTEGER.

Definition
Interface Select Code

Interface select codes (ISC) specify hardware interfaces that connect the
computer to devices. Some ISCs are fixed:

ISC Fixed Devices
1 CRT display
2 Keyboard
3 Graphic display
6 Bit mapped graphic
32 Processor

Others can be specified when the device is loaded with LOAD BIN. If the ISC is
not specified, the following defaults are used:

ISC Loadable Devices
7 GPIB Board
8 2nd GPIB Board
9 RS-232 Port (COM1)
10 Centronix Port (PRN/LPT1)
11 2nd RS-232 Port (COM2)
12 2nd Centronix Port (LPT2)
12 GPIO Board
18 Several data acquisition boards

Definition
Line Label

Line labels may optionally follow any line number. The use of line labels
results in more structured programming. Line references to labels are
unaffected by line numbering. The rules for naming a line label are the same
as for variables (see Variable Names). A colon follows the name in the line that
is labeled, but does not follow the name in lines referencing that line.

Definition
Line Number

Each program line requires a unique line number at the beginning of the line.
Line numbers must be in the range of 1 to 65534. HTBasic ignores leading
zeros and spaces before line numbers. Line numbers are used to:

•    indicate the order of statement execution
•    provide control points for branching
•    help in debugging and updating programs
•    indicate the location of run-time errors

Definition
Local Variable

All variables are local and are accessible only in the current context unless
declared as COM variables. When the context begins execution, storage space
is allocated for all local variables and their values are set to zero. When
execution of the context is completed, the local variable storage space is
released and their values are lost.

Definition
Matrix

A matrix is a two dimensional numeric array. The RANK of a matrix is two.

Definition
Numeric Array

A numeric array is an array (see Array) in which the data type of each element
is either integer, real or complex.

Definition
Numeric Array Element

A numeric array element is a simple value, either an integer, real, or complex
number and is compatible with any operation which expects a single value. An
element is specified by following the array name with a left parenthesis, "(", a
comma-separated list of subscripts and a right parenthesis, ")". The number of
subscripts specified must match the RANK of the array. The value of each
subscript must lie in the legal range for that dimension as defined in the
declaration statement (ALLOCATE, COM, COMPLEX, DIM, INTEGER, REAL,
REDIM). Some matrix operations redefine the range of a dimension.

Definition
Numeric Constant

A constant is an entity with a fixed value. There are two types of numeric
constants: integer and real. An integer constant is a whole number not
specified with a decimal point, ".", nor with scientific notation, which falls in
the range -32768 to 32767. Integer constants can be expressed in decimal,
octal (base 8) or hexadecimal (base 16). An octal constant must begin with
the characters "&O" or simply "&". A hexadecimal constant must begin with
the characters "&H. A real constant is specified with a decimal point or
scientific notation, or is outside the integer range. Some integer constants are
"1", "-20000", "&H7FFF" and "&O377. Some real constants are "-1.0", "1E+10"
and "40000".

Definition
Numeric Expression

A numeric expression is any legal combination of operands and operators
joined together in such a way that the expression as a whole can be reduced
to a numeric value. The following syntax diagram defines the legal
combination of operands and operators. Precedence rules provide additional
constraints on an expression (see Precedence).

numeric-expression =
{ + | - | NOT } numeric-expression |
(numeric-expression) |
numeric-expression operator numeric-expression |
numeric-constant | numeric-name |
numeric-array-element |
numeric-function [(param [,param...])] |
FN function-name [(param [,param...])] |
string-expression compare-operator string-expression

where:

operator = + | - | * | / | DIV | MOD | MODULO | ^ |
AND | OR | EXOR | compare-operator
compare-operator =      <> | = | < | > | <= | >=
numeric-function = a function, like COS, which returns a numeric value.
param = legal parameters for numeric functions and user defined
functions are explained in Chapter 4, the "Keyword Dictionary"

Definition
Numeric Name

The rules for naming a numeric variable are explained under "Variable Name".
A numeric variable is of type integer, real or complex.

Definition
Ordinary file

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF
ASCII, BDAT, BIN and PROG. All other files are ordinary files. In a CAT listing,
the file type column is blank for ordinary files or gives the operating system
(i.e., "DOS" or "HP-UX"). Unlike typed files, no special header or other
embedded information is placed in the file. Under DOS or NT, an ordinary file
with FORMAT ON is compatible with all programs that support DOS/NT ASCII
files. Under UNIX, an ordinary file with FORMAT ON and EOL of CHR$(10) is
compatible with all programs that support UNIX ASCII files. See CREATE in
Chapter 4, the "Keyword Dictionary."

Definition
Path Specifier

A path specifier in HTBasic is similar to an MSUS (Mass Storage Unit Specifier)
in HP BASIC. It identifies a place where files are stored. Depending on your
operating system, the necessary information to uniquely identify such a place
includes: the device, address, volume, unit, and directory path list. A summary
of the rules for DOS, Windows, NT and UNIX is given here. Consult your
operating system manuals for complete rules.

Under DOS, Windows and NT, a path specifier consists of an optional disk
drive letter and an optional directory path. If the disk drive letter is omitted,
the default disk is used. A directory path is composed of the names of the
directories which form the path from the root directory "\", to the directory
where you wish to access files. Each directory name is separated from the
others with the backslash, "\", symbol. The rules for each directory name are
the same as for a filename (File Specifier). If the directory path is omitted, the
default directory is used.

For example, suppose that you wish to use drive "C:" and a catalog of the root
directory "C:\" shows a directory named "HTB". Suppose that a catalog of "C:\
HTB" shows a directory named "FILES.BIN". And suppose that it is this
directory you wish to specify with a path specifier. The correct path specifier is
"C:\HTB\FILES.BIN". If drive "C:" is the default drive, then the "C:" could be
omitted. If directory HTB is the default directory, then the "\HTB\" could be
omitted. Please read your operating system manual for a greater
understanding of these concepts.

Under UNIX, a path specifier is composed of the names of the directories
which form the path from the root directory "/", to the directory where you
wish to access files. Each directory name is separated from the others with the
slash character, "/". The rules for each directory name are the same as for a
filename (see File Specifier). If the directory path is omitted, the current
directory is used.

Definition
Pen Number

The term "pen number" is used in two different ways. The appropriate range is
explained in the text describing the statement.

The first way in which the term "pen number" is used is for CRT color attribute
values. The legal values are:

Pen Color Pen Color
136 White 140 Cyan
137 Red 141 Blue
138 Yellow 142 Magenta
139 Green 143 Black

The second way in which the term "pen number" is used is in statements
affecting graphic colors. In these instances, pen numbers begin at zero and go
to N-1, where N is the number of colors displayable at the same time on the
computer display.

Definition
Pipe Specifier

A pipe specifier is a string beginning and/or ending with the pipe character.
Under UNIX, the pipe character is the vertical bar, "|". The remainder of the
string specifies one or more processes to be executed. If the pipe-specifier
begins with the "|" pipe character, then OUTPUT can be used to send
information to the process. If the pipe-specifier ends with the pipe character,
then ENTER can be used to get information from the process. Pipes are
supported under UNIX, but not under DOS.

Definition
Precedence

Mathematical precedence describes the order in which operators in an
expression are evaluated. Some cheap calculators execute each operation as
it is entered. If you are used to this type of calculator, you may be confused by
the concept of precedence. For example, the correct answer to the formula:
1+2*3+4

is 11, not 13. This is because multiplication (2*3) has a higher precedence
than addition (1+2). If the two operators are on the same row in the
precedence chart, the operations occur in left to right order (i.e. 1+2-3+4).

HP BASIC (and HTBasic) has an odd quirk in its definition of precedence which
you should be aware of. Most computer languages place all monadic operators
(operators which operate on one operand) at a higher precedence than dyadic
operators (operators which operate on two operands). However, HTBasic and
HP BASIC place monadic + and - below some of the dyadic operators. The
following is one example of an expression that will evaluate differently
because of this:
-4^0.5

With HTBasic, this is equivalent to -(4^0.5) which is equal to -2. With most
other computer languages, this is equivalent to (-4)^0.5 which is an illegal
operation.

Precedence Table
1 Parentheses () and sub-strings []
2 Functions: built in and user defined.
3 Exponentiation Operator ^
4 Multiplicative Operators *,/,DIV,MODULO,MOD
5 Monadic + and -
6 Dyadic + and -
7 String Concatenation &
8 Relational Operators =,<>,<,>,<=,>=
9 Monadic Logical Operator NOT
10 Logical Operator AND
11 Logical Operators OR and EXOR

Definition
Primary Address

A primary address is a numeric expression which can be rounded to an integer
in the range 0 to 31. It specifies the address of a device on the GPIB bus.
Usually, GPIB devices have a switch which allows their primary address to be
set to any of the values 0 through 31.

Definition
Priority

Priority is a measure of the relative importance of the currently executing line
and allows higher priority events to interrupt lower priority events, while
preventing lower priority events from interrupting higher priority events.
Priority values can range from 0 (least important) to 15 (most important). The
ON statement which defines the service routine for an event also allows the
priority for that service to be defined. The system priority is the priority of the
currently executing line and can be changed with the SYSTEM PRIORITY
statement.

Definition
PROG file type

PROG files are used to hold binary program images and are the most efficient
file type for storing an HTBasic program. See STORE in Chapter 4, the
"Keyword Dictionary" for information about PROG files.

Definition
Real

"Real" is a data type. Other data types are integer, complex, string, and I/O
path. The Real data type is a subset of all rational numbers. The particular
subset depends on your computer. Most computers, including the IBM PC, Sun
SPARC and HP PA workstations use IEEE Std 754-1985 for Binary Floating point
numbers. This gives the Real data type an approximate range of 2E-308 to
1E+308 and 15 decimal digits of precision. Both positive and negative
numbers are represented. MINREAL and MAXREAL are functions which return
the smallest and largest positive real numbers. The range for negative
numbers is -MINREAL to -MAXREAL.

Use the REAL statement to declare local real variables and the COM statement
to declare global real variables. Use the ALLOCATE statement to declare a
local real variable which can be DEALLOCATEd dynamically. If a variable is not
declared, it will automatically be declared local and real unless CONFIGURE
DIM OFF is used.

Please Note: Internally real numbers are represented in a binary format
(explained in the User's Guide). You need not understand this format, but you
should understand its implications. It is possible to have two different numbers
in this format whose 15 digit decimal representations are the same. However,
when comparing or subtracting these two "look-equal" numbers, you will find
they are not equal. Also, when the result of an arithmetic operation is a
number not representable in the binary format, an approximation must be
used instead. You should take this into account and keep track of the error
bounds as approximate numbers are used in further calculations.

Definition
Record Number

The record number is a numeric expression which is rounded to an integer to
specify a record within a file. The first record is one. BDAT and ordinary files
allow random access by specifying a record number in the I/O statement. The
record length for ordinary files is always one. The record length for BDAT files
is defined when the file is created with the CREATE BDAT statement.

Definition
Scientific Notation

Scientific notation can be used to represent numbers by using the shorthand
notation "n.nnnEmmm" instead of "n.nnn x 10^mmm".

Definition
Signal Number

A signal number is a numeric expression rounded to an integer in the range 0
to 15. A signal is an event which can be generated by the SIGNAL statement
and can be handled by a routine set up with the ON SIGNAL statement.

Definition
Softkey Macro

Also called a typing aid, a softkey macro is a sequence of keys assigned to a
softkey. When the softkey is pressed, the sequence is typed into the keyboard
buffer just as if you had typed them yourself. The definition of the softkey
macro is user definable.

Definition
String

"String" is a data type. Other data types are integer, real, complex, and I/O
path. A string is a combination of ASCII characters. These are the letters,
numbers and symbols that you can type on the keyboard. ASCII characters
also include control characters such as carriage return, etc. A string can be
just one character long or it can be one word, one sentence, one paragraph
long or any combination of letters, numbers, spaces and symbols up to a
maximum length of 32767 characters.

Use the DIM statement to declare a local string variable and define its
maximum length. The length of a string variable can never exceed its
declared length. Use the ALLOCATE statement to declare a local string
variable which can be DEALLOCATEd dynamically. Use the COM statement to
declare a global string variable. If a string variable is not declared, it will be
automatically declared as an 18 character maximum length local string
variable unless CONFIGURE DIM OFF is used.

Definition
String Array

A string array is an array (see Array) in which the data type of each element is
string.

Definition
String Array Element

A string array element is a simple string and is compatible with any function
or operation which expects a single string value. An element is specified by
following the array name with a left parenthesis, "(", a comma-separated list
of subscripts and a right parenthesis, ")". The number of subscripts specified
must match the RANK of the array.

Definition
String Expression

A string expression is any legal combination of operands and operators joined
together in such a way that the expression as a whole can be reduced to a
string value. The following syntax diagram defines the legal combination of
operands and operators.

string-expression =
(string-expression) |
string-expression & string-expression |
"string-literal" |
string-name |
string-array-element |
sub-string |
string-function [(param [,param...])] |
FN function-name$ [(param [,param...])]

where:

string-function = a function, like UPC$, which returns a string value.
param = legal parameters for string functions and user defined
functions are explained in Chapter 4, the "Keyword Dictionary."

Definition
String Literal

A string literal is a string of characters delimited by the quote (") character. To
include a quote character in the string, include two quote characters in the
place of the one you wish to include. For example " ""hello"" ".

Definition
String Name

The rules for naming a string variable are the same as for a variable (see
Variable Name) plus the addition of a trailing dollar sign, "$". A string variable
is a variable whose data type is "string".

Definition
Sub-string

A substring defines a portion of a string variable or string array element. It is
selected by specifying a starting position within the string value and
optionally, either the length of the sub-string, or the ending position within the
string value. If only the starting position is specified, the rest of the string
value from that point on is used for the sub-string. String positions are one-
based, i.e., the first character of a string is in position one. The syntax is as
follows:

sub-string =
'[' start-pos ']' |
'[' start-pos, end-pos ']' |
'[' start-pos; length ']'

where:

start-pos and end-pos = numeric expression rounded to an integer in the
range 1 to 32767.
length = numeric expression rounded to an integer
in the range 0 to 32767.

Definition
Subprogram Name

The rules for naming a subprogram are the same as for a variable (see
Variable Name). A subprogram is one type of context (see Context).

Definition
Subscript

A subscript is a numeric expression rounded to an integer to specify an array
dimension. The value of each subscript must lie in the legal range for that
dimension as defined in the declaring statement (ALLOCATE, COM, COMPLEX,
DIM, INTEGER, REAL, REDIM). Some matrix operations automatically redefine
the range of a dimension.

Definition
UNIX file type

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF
ASCII, BDAT, BIN and PROG. In a CAT listing, the file type column is blank for
ordinary files or gives the operating system (i.e., "DOS" or "HP-UX"). Unlike
typed files, no special header or other embedded information is placed in the
file. Under UNIX, an ordinary file with FORMAT ON and EOL of CHR$(10) is
compatible with all programs that support UNIX ASCII files. See CREATE in
Chapter 4, the "Keyword Dictionary."

Definition
Variable Name

A variable name can have up to fifteen characters. The characters can be
alphabetic, numerals, underlines and characters in the range CHR$(128) to
CHR$(254). (HP BASIC and some versions of HTBasic use the range CHR$(161)
to CHR$(254).) The first character may not be a numeral or an underline. A
variable name can be the same as a keyword if it is entered partly in upper
case and partly in lower case. Variable names are listed with the first
character in upper case and the remaining characters in lower case.

Definition
Vector

A vector is a one dimensional numeric array, i.e., the RANK of the array is one.

Definition
Volume Label

A volume label is present in some operating systems to label a mass storage
volume (usually a disk). The rules for legal volume labels differ from system to
system, but are given here for DOS. Consult your system manuals for other
operating systems.

With DOS, a legal volume label is 11 characters long. Legal characters are the
same as for DOS file specifiers. The volume label, however, does not divide
the 11 characters with a period between the 8th and 9th characters.

Definition
Volume Specifier

A volume specifier in HTBasic is similar to an MSUS (Mass Storage Unit
Specifier) in HP BASIC. However, for disk volumes with multiple directories, a
volume specifier does not completely identify a place to store files (see Path
Specifier).

Two types of volume specifiers are supported by HTBasic. The first is the
native type used by your operating system. For DOS, Windows and NT, a
volume specifier is the drive letter followed by a colon. For example, "C:". If
used with a file specifier, it is appended onto the front of the filename,
"C:DATA". For other operating systems, consult your manuals.

The second type of volume specifier supported by HTBasic is the HP BASIC
compatible msus style. For example, ":CS80,700,0". Support for this type is
included for compatibility with old HP programs. To use this type of volume
specifier you must use the CONFIGURE MSI statement to define a translation
between this type of volume specifier and the native type used by your
system. For example:
CONFIGURE MSI ":CS80,700,0" TO "B:"
CONFIGURE MSI ":A" TO "A:"
CONFIGURE MSI ":,1400,1" TO "C:\HTB\1400\1"

The first example would allow a file specifier such as "DATA:CS80,700,0". The
second example would allow a file specifier such as "DATA:A". If the
CONFIGURE statement is not used, then an HP BASIC style volume specifier
will cause an error. The third example shows an HP style volume specifier
being equated with a DOS style path specifier.

Keywords
A
ABORT Stops IEEE-488 activity.
ABORTIO Stops an active TRANSFER.
ABS Returns the absolute value of an expression.
ACS Returns the arccosine of an expression.
ACSH Returns the hyperbolic arccosine of an expression.
ALLOCATE Dynamically allocates memory for string variables and arrays.
ALPHA Controls the visibility of the ALPHA screen area.
ALPHA HEIGHT Sets the number of lines used for the ALPHA screen.
ALPHA PEN Sets the ALPHA display color.
AND Performs the logical conjunction of two expressions.
APPEND See ASSIGN, DUMP DEVICE IS, PLOTTER IS, PRINTALL IS and    PRINTER

IS.
AREA Sets or defines an AREA fill color.
ARG Returns the Argument (Angle) of a complex number.
ASCII See    CREATE ASCII and    LEXICAL ORDER IS.
ASN Returns the arcsine of an expression.
ASNH Returns the hyperbolic arcsine of an expression.
ASSIGN Sets up an I/O path and its attributes.
ATN Returns the arctangent of an expression.
ATNH Returns the hyperbolic arctangent of an expression.
ATN2 Returns the angle to a point.
AXES Draws x-y axes.

Keywords
B
BASE Returns the lower bound of an array dimension.
BDAT See    CREATE BDAT and    CONFIGURE BDAT.
BEEP Generates music or sound effects.
BIN See    LIST BIN, LOAD BIN and    SCRATCH.
BINAND Performs a bit by bit logical AND.
BINCMP Performs a bit by bit complement.
BINEOR Performs a bit by bit exclusive OR (EXOR).
BINEQV Performs a bit by bit equivalence operation.
BINIMP Performs a bit by bit implication operation.
BINIOR Performs a bit by bit inclusive OR.
BIT Allows any bit in an INTEGER to be tested.
BREAK Sends a BREAK on a serial interface.
BUFFER See    ASSIGN, COM, DEF FN, DIM, INTEGER, REAL and    SUB.
BYTE See    ASSIGN.

Keywords
C
CALL Starts execution at the specified SUBprogram or CSUB.
CASE See    SELECT ... CASE.
CAT Displays a catalog of files or PROG file contexts.
CAUSE ERROR Simulates a specified error.
CD See    MASS STORAGE IS.
CHANGE Finds and replaces strings.
CHECKREAD Enables/disables verification of data sent to disk.
CHGRP Sets the Group Ownership of a file.
CHOWN Sets the Individual Ownership of a file.
CHR$ Creates an ASCII character from its decimal numeric code.
CHRX Returns the width of a character cell.
CHRY Returns the height of a character cell.
CINT Converts a value to INTEGER.
CLEAR Sends an IEEE-488 bus Device Clear.
CLEAR ERROR Resets all error indicators.
CLEAR LINE Clears the keyboard input line.
CLEAR SCREEN Clears the ALPHA display.
CLIP Changes the clipping rectangle.
CLS See    CLEAR SCREEN.
CMD See    SEND.
CMPLX Combines real and imaginary parts to return a complex number.
COLOR Defines and selects the color for graphics.
COM Defines global variables.
COMMAND$ Returns a copy of the command line.
COMPLEX Reserves storage for complex variables and arrays.
CONFIGURE BDAT Specifies the byte order for CREATE BDAT.
CONFIGURE CREATE Specifies the kind of file header used with typed files.
CONFIGURE DIM Turns implicit variable dimensioning on or off.
CONFIGURE DUMP Specifies what graphic printer language to use for DUMP.
CONFIGURE KBD Defines keyboard mappings for character sets.
CONFIGURE KEY Assigns editor functions to keyboard keys.
CONFIGURE LABEL Defines characters for the LABEL statement.
CONFIGURE LONGFILENAMES Specifies use of long filenames.
CONFIGURE MSI Specifies HP style volume specifier translations.
CONFIGURE PRT Specifies the value of PRT.
CONFIGURE SAVE Sets the file type produced by SAVE.
CONJG Returns the conjugate of a complex number.
CONT Restarts a program which is PAUSEd.
CONTROL Sends control information to an interface or I/O path.
CONVERT This ASSIGNoption is not supported.
COPY Copies files.
COPYLINES Copies one or more program lines from one location to another.
COS Returns the cosine of an expression.
COSH Returns the hyperbolic cosine of an expression.
COUNT See    CAT.
CREATE Creates an ordinary file on the mass storage media.
CREATE ASCII Creates a LIF ASCII file on the mass storage media.
CREATE BDAT Creates a BDAT (binary data) file on the mass storage media.

CREATE DIR Creates directories on the mass storage media.
CRT Returns the integer 1, the CRT interface select code.
CSIZE Sets the character size for LABEL and SYMBOL.
CSUB Compiled SUBprograms.
CSUM See    MAT.
CVT$ Convert strings from one alphabet to another.
CYCLE See    OFF CYCLE and    ON CYCLE.

Keywords
D
DATA Stores data items in the program.
DATE Converts a string representing a date to a number of seconds.
DATE$ Takes a numeric value representing seconds and formats it into a date

string.
DEALLOCATE Frees memory space reserved by the ALLOCATE statement.
DEF FN Begins a user-defined function subprogram.
DEG Sets the trigonometric mode to degrees.
DEL Deletes program lines.
DELAY See    ASSIGN, OFF DELAY, ON DELAY, PRINTALL IS and    PRINTER IS.
DELSUB Deletes SUB or CSUB subprograms from memory.
DET Returns the determinant of a matrix.
DIGITIZE Inputs digitized X and Y coordinates.
DIM Dimensions REAL arrays and strings.
DISABLE Disables event-initiated branches.
DISABLE INTR Disables interrupts from the specified interface.
DISP Displays items on the CRT display line.
DISPLAY FUNCTIONS Controls the display of control characters on the CRT.
DIV Returns the quotient of an integer divide operation.
DOT Returns the dot product of two numeric vectors.
DRAW Draws a line to the X,Y location.
DROUND Rounds a numeric-expression to the specified number of digits.
DUMP Copies the contents of the display to a printing device.
DUMP DEVICE IS Defines the printing device used by DUMP.
DVAL Converts a binary, octal, decimal or hexadecimal string to a real

number.
DVAL$ Converts a number to a binary, octal, decimal or hexadecimal string.

Keywords
E
ECHO See SET ECHO.
EDGE See IPLOT,PLOT,POLYGON,RECTANGLE,RPLOT and SYMBOL.
EDIT Puts you into program EDIT mode.
EDIT KEY Puts you into softkey EDIT mode.
ELSE See IF ... THEN and SELECT ... CASE.
ENABLE Enables all event-initiated branches suspended by DISABLE.
ENABLE INTR Enables interrupts from a specified interface.
END Marks the end of the program.
END IF See IF ... THEN.
END LOOP See LOOP.
END SELECT See SELECT ... CASE.
END WHILE See WHILE.
ENTER Inputs data and assigns it to variables.
ENVIRON$ Returns information from the operating system environment.
EOL See ASSIGN,PRINTALL IS and PRINTER IS.
ERRDS This function is not supported.
ERRL Compares a line number with ERRLN.
ERRLN Returns the program line number on which the last error occurred.
ERRM$ Returns the error message text of the last error.
ERRN Returns the last error number.
ERROR See CAUSE ERROR,CLEAR ERROR,ERROR RETURN,ERROR SUBEXIT,OFF

ERROR,ON ERROR.
ERROR RETURN Returns program execution to the line following the most recent error.
ERROR SUBEXIT Returns subprogram execution to the line following the most recent

error.
EXECUTE Executes an operating system command.
EXIT IF See LOOP.
EXOR Performs a Logical exclusive OR of two expressions.
EXP Returns "e" raised to a power.
EXPANDED See DUMP DEVICE IS.

Keywords
F
FBYTE Determines if character is first byte of a two byte character.
FILL See IPLOT,PLOT,POLYGON,RECTANGLE,RPLOT and SYMBOL.
FIND Searches for specified characters in a program.
FIX Truncates a value to INTEGER.
FN Executes a user-defined function.
FNEND Ends a function definition. See DEF FN.
FOR ... NEXT Executes a loop a fixed number of times.
FORMAT See ASSIGN.
FRACT Returns the fractional part of an argument.
FRAME Draws a frame around the clipping area.
FRE Returns the amount of free memory.
FRENCH See LEXICAL ORDER IS.
FROM See LOADSUB and READ LABEL.

Keywords
G
GCLEAR Clears the graphics screen.
GERMAN See LEXICAL ORDER IS.
GESCAPE Sends device-specific information to a graphic device.
GET Loads LIF, DOS, UNIX, Viper-I and Viper-II ASCII program file into

memory.
GINIT Initializes graphics parameters to their default values.
GLOAD Loads an integer array into the CRT display buffer.
GOSUB Transfers control to a subroutine.
GOTO Transfers control to a specified line.
GRAPHICS Makes the graphics screen visible or invisible.
GRAPHICS INPUT IS Defines the device to be used for graphic input.
GRID Draws a grid pattern.
GSEND Sends commands to the PLOTTER IS device.
GSTORE Stores the CRT display buffer into an integer array.

Keywords
H
HELP Outputs Reference Manual pages to the computer screen.

Keywords
I
IDN See MAT.
IDRAW Draws a line an incremental distance.
IF ... THEN Performs an action if a condition is true.
IMAG Returns the imaginary part of a complex number.
IMAGE Defines the format for data input and output.
IMOVE Lifts and moves the logical pen position incrementally.
INDENT Indents a program to reflect its structure.
INITIALIZE Initializes the mass storage media for use by the computer.
INMEM Identifies if a subprogram is loaded.
INP and INPW Inputs a byte or word from an I/O Port.
INPUT Inputs numeric or string data from the keyboard.
INPW See INP.
INT Performs the greatest integer function.
INTEGER Declares, dimensions and reserves memory for INTEGER variables.
INTENSITY See AREA,COLOR and SET PEN.
INTERACTIVE See RESUME INTERACTIVE and SUSPEND INTERACTIVE.
INV See MAT.
IPLOT Moves the pen relative to its present location.
IVAL Converts a binary, octal, decimal or hexadecimal string to an INTEGER.
IVAL$ Converts an INTEGER to a binary, octal, decimal or hexadecimal string.

Keywords
K
KBD Returns a 2, the device select code of the keyboard.
KBD$ Returns the contents of the ON KBD buffer.
KBD CMODE Sets softkey compatibility mode.
KBD LINE PEN Sets the pen color for the input line.
KEY LABELS Controls the display of the softkey labels.
KEY LABELS PEN Sets the color for the softkey labels.
KEY See CONFIGURE KEY,EDIT KEY,LIST KEY,LOAD KEY,OFF KEY,ON KEY,

READ KEY,SCRATCH,SET KEY and STORE KEY.
KNOB See OFF KNOB and ON KNOB.
KNOBX Returns and resets the KNOBX counter value.
KNOBY Returns and resets the KNOBY counter value.

Keywords
L
LABEL Prints text on graphic devices.
LDIR Sets the angle for drawing LABELs and SYMBOLs.
LEN Returns the number of characters in a string.
LET Assigns a value to a variable.
LEXICAL ORDER IS Defines "alphabetical" order for string comparisons.
LGT Computes common (base 10) logarithms.
LINE TYPE Sets the style or dash pattern and repeat length of lines.
LINK Makes a hard link to a file.
LINPUT Assigns alphanumeric keyboard input to a string variable.
LIST Lists the program in memory to the selected device.
LIST BIN Lists each BIN currently in memory.
LIST KEY Lists the softkey macro definitions.
LISTEN See SEND.
LOAD Loads a user program into memory.
LOAD BIN Loads a BIN system program file into memory.
LOAD KEY Loads softkey macro definitions into memory.
LOADSUB Loads a BASIC subprogram into memory.
LOCAL Returns specified IEEE-488 devices to their local state.
LOCAL LOCKOUT Sends the IEEE-488 LLO message.
LOCATOR See READ LOCATOR and SET LOCATOR.
LOCK Secures a file for exclusive access.
LOG Computes natural (base "e") logarithms.
LOOP Defines a series of statements to be executed repeatedly.
LORG Specifies the position of a LABEL relative to the current position.
LWC$ Converts characters in a string to lowercase.

Keywords
M
MASS STORAGE IS Assigns the current mass storage device and directory.
MAT Specifies an array operation.
MAT REORDER Reorders array elements by a supplied subscript list.
MAT SEARCH Searches an array for user specified conditions.
MAT SORT Sorts string or numeric array data.
MAX Returns the maximum value of a list of expressions.
MAXLEN Returns the maximum declared length of a string variable.
MAXREAL Returns the largest positive REAL number.
MERGE ALPHA Enables all planes for Alpha and Graphics.
MIN Returns the minimum value of a list of expressions.
MINREAL Returns the smallest positive REAL number.
MLA See SEND.
MOD Returns the remainder after integer division.
MODULO Returns the true mathematical modulus.
MOVE Moves the logical and physical pens to a new position.
MOVELINES Moves one or more program lines from one location to another.
MSI See MASS STORAGE IS.
MTA See SEND.

Keywords
N
NEXT See FOR.
NOT Returns the logical negation of an expression.
NPAR Returns the number of parameters passed to a subprogram.
NUM Returns the decimal ASCII equivalent of the first character in a string.

Keywords
O
OFF See ALPHA OFF, CLIP OFF, GRAPHICS OFF, TRACE OFF.
OFF CYCLE Cancels event branches defined by ON CYCLE.
OFF DELAY Cancels event branches defined by ON DELAY.
OFF END Cancels event branches defined by ON END.
OFF EOR Cancels event branches defined by ON EOR.
OFF EOT Cancels event branches defined by ON EOT.
OFF ERROR Cancels event branches defined by ON ERROR.
OFF INTR Cancels event branches defined by ON INTR.
OFF KBD Cancels event branches defined by ON KBD.
OFF KEY Cancels event branches defined by ON KEY.
OFF KNOB Cancels event branches defined by ON KNOB.
OFF SIGNAL Cancels event branches defined by ON SIGNAL.
OFF TIME Cancels event branches defined by ON TIME.
OFF TIMEOUT Cancels event branches defined by ON TIMEOUT.

ON Transfers control to one of a list of lines.
ON See ALPHA ON, CLIP ON, GRAPHICS ON
ON CYCLE Defines a repeating event branch.
ON DELAY Defines an event branch after specified seconds.
ON END Defines an event branch for end-of-file conditions.
ON EOR Defines an event branch for end-of-record conditions.
ON EOT Defines an event branch for end-of-transfer conditions.
ON ERROR Defines an event branch for trappable errors.
ON INTR Defines a hardware interrupt initiated branch.
ON KBD Defines an event branch for when a key is pressed.
ON KEY Defines an event branch for when a softkey is pressed.
ON KNOB Defines an event branch for when the KNOB is turned.
ON SIGNAL Defines an event branch for SIGNAL statement.
ON TIME Defines a single event branch for a specific time.
ON TIMEOUT Defines an event branch for an I/O timeout.
OPTION BASE Sets the default lower bound of array subscripts.
OPTIONAL See DEF FN and SUB.
OR Returns the logical inclusive OR of two expressions.
OUT and OUTW Outputs a byte or word to an I/O Port.
OUTPUT Outputs items to a specified destination.
OUTW See OUT.

Keywords
P
PARITY This ASSIGNoption is not supported.
PASS CONTROL Passes Active Controller capability.
PAUSE Pauses program execution.
PDIR Sets the rotation angle for IPLOT, RPLOT, POLYGON and RECTANGLE.
PEN Sets the line color or physical pen.
PENUP Raises the PEN on the current plotting device.
PERMIT Changes file protection permissions.
PI Returns the value 3.141 592 653 589 79.
PIVOT Rotates the coordinates of all drawn lines.
PLOT Moves the pen to the specified X and Y coordinates.
PLOTTER IS Specifies the graphics output device and language.
POLYGON Draws a closed regular polygon, circle, or ellipse.
POLYLINE Draws an open regular polygon.
POS Returns the position of one string within another.
PPOLL Conducts a Parallel Poll of the IEEE-488 and returns status.
PPOLL CONFIGURE Configures remote IEEE-488 device parallel poll response.
PPOLL RESPONSE Configures local IEEE-488 device parallel poll response.
PPOLL UNCONFIGURE Disables the parallel poll response of a specified device or

devices.
PRINT Outputs data to the PRINTER IS device.
PRINT LABEL Assigns a name to a data storage volume.
PRINT PEN Selects the pen color used for the output area and DISP line.
PRINTALL IS Assigns a logging device for operator interaction and error messages.
PRINTER IS Specifies the system printing device.
PRIORITY See SYSTEM PRIORITY.
PROTECT Changes file attributes.
PROUND Rounds the argument to the specified power of ten.
PRT Returns the default device selector for the printer.
PURGE Deletes a file or a directory on a mass storage media.

Keywords
Q
QUIT Quits BASIC and returns to the operating system.

Keywords
R
RAD Sets the trigonometric mode to radians for all angle measurements.
RANDOMIZE Selects a seed for the RND function.
RANK Returns the number of dimensions in an array.
RATIO Returns the ratio of X to Y hard-clip limits for the PLOTTER IS device.
READ Reads values from DATA statements.
READ KEY Returns one or more softkey macro definitions.
READ LABEL Reads a volume label.
READ LOCATOR Reads the locator device without waiting for a digitize operation.
READIO Reads a hardware register or a memory byte/word.
REAL Reserves storage for floating point variables and arrays.
REAL Converts an INTEGER or COMPLEX number to REAL.
RECOVER See ON-event statements.
RECTANGLE Draws and optionally fills and edges rectangles.
REDIM Redimensions an array by changing the subscript ranges.
REM Begins a REMark or comment line for program documentation.
REMOTE Sets the remote state on a IEEE-488 device.
REN Renumbers program lines.
RENAME Changes the name of a file.
REORDER See MAT REORDER.
REPEAT ... UNTIL Defines a loop that is repeated UNTIL a condition is satisfied.
REQUEST Sends a Service Request SRQ on the IEEE-488.
RE-SAVE Copies the program into the specified ASCII file.
RES Returns the result of the last numeric keyboard calculation.
RESET Resets an interface or file or buffer pointers.
RESET See SUSPEND INTERACTIVE.
RESTORE Specifies which DATA statement to use for the next READ operation.
RE-STORE Stores the BASIC program in a file.
RE-STORE KEY Stores the KEY definitions in a file.
RESUME INTERACTIVE Restores the normal functions of program control keys.
RETURN Returns to the program line following the last GOSUB line.
REV$ Reverses the sequence of characters in a string.
RND Returns a pseudo-random number.
ROTATE Shifts a 16 bit binary value with wraparound.
RPLOT Moves the pen relative to the current graphic location.
RPT$ Returns a string replicated a specified number of times.
RSUM See MAT.
RUN Starts program execution.
RUNLIGHT Controls the display of the pseudo runlight on the display.

Keywords
S
SAVE Saves the current program into an ASCII file.
SBYTE Determines if character is second byte of a two byte character.
SC Returns the interface select code associated with an I/O path name.
SCRATCH Clears user memory.
SEC See SEND.
SECURE Protects programs lines.
SELECT ... CASE Defines a CASE block structure.
SEND Sends messages on the IEEE-488 bus.
SEPARATE ALPHA On a bit-mapped display, simulates 9836 style alpha/graphics

hardware.
SET ALPHA MASK Determines which plane(s) can be modified by ALPHA display

operations.
SET CHR Defines the bit-patterns for one or more characters.
SET DISPLAY MASK Specifies which planes can be seen on the alpha display.
SET ECHO Sets the echo location on the PLOTTER IS device.
SET KEY Defines one or more softkey macros.
SET LOCATOR Sets a new graphic locator position on the GRAPHICS INPUT IS device.
SET PEN Defines part or all of the color map.
SET TIME Sets the time of day clock.
SET TIMEDATE Sets the date and time of the computer's clock.
SGN Returns the arithmetic sign of an expression.
SHIFT Shifts a 16 bit binary value.
SHOW Defines the graphics unit-of-measure isotropically.
SIGNAL Initiates a software interrupt.
SIN Returns the sine of the argument.
SINH Returns the hyperbolic sine of an expression.
SIZE Returns the number of elements of a dimension of an array.
SORT See MAT SORT.
SOUND Produces tones on the computer speaker.
SPANISH See LEXICAL ORDER IS.
SPOLL Performs a serial poll of a IEEE-488 device.
SQR See SQRT.
SQRT Returns the square root of an expression.
STANDARD See LEXICAL ORDER IS.
STATUS Returns control information from an interface or I/O path.
STEP See FOR.
STOP Terminates program execution.
STORE Stores the BASIC program in a file.
STORE KEY Stores the softkey definitions in a file.
STORE SYSTEM Stores BASIC and loaded BINs into a file.
SUB Defines a subprogram and specifies formal parameters.
SUBEND and SUBEXIT See SUB.
SUM Returns the sum of all elements in a numeric array.
SUSPEND INTERACTIVE Deactivates program control keys.
SWEDISH See LEXICAL ORDER IS.
SYMBOL Allows the user to define symbols that may be used as labels.
SYSBOOT Reboots the computer.
SYSTEM KEYS Displays the System Softkeys Menu.
SYSTEM PRIORITY Sets the system priority to a specified level.

SYSTEM$ Returns system status and configuration information.

Keywords
T
TAB See DISP and PRINT.
TABXY See PRINT.
TALK See SEND.
TAN Returns the tangent of an expression.
TANH Returns the hyperbolic tangent of an expression.
THEN See IF ... THEN.
TIME Converts a time-of-day string to seconds after midnight.
TIME$ Returns a formatted time of day string.
TIMEDATE Returns the current time and date from the clock.
TIMEOUT See OFF TIMEOUT and ON TIMEOUT.
TIMEZONE IS Corrects between GMT and local time for HP BASIC/WS.
TO See COPY, COPYLINES, FOR, MAT SORT, MOVELINES, RENAME,

SELECT ... CASE.
TRACE Controls the display of information about a running program.
TRACK Enables or disables tracking of the locator position on the display

device.
TRANSFER Performs an unformatted I/O transfer.
TRIGGER Sends a trigger message to all or selected devices on the IEEE-488.
TRIM$ Removes leading and trailing spaces from a string.
TRN See MAT.

Keywords
U
UNL See SEND.
UNLOCK Removes exclusive access protection from a LOCKed file.
UNT See SEND.
UNTIL See REPEAT.
UPC$ Converts characters in a string to uppercase characters.
USER KEYS Displays the specified User Softkey Menu.
USING See IMAGE, ENTER, LABEL, OUTPUT, PRINT.

Keywords
V
VAL Converts a string into a numeric value.
VAL$ Converts a number into its string representation.
VIEWPORT Defines the area of the graphic device used for output.

Keywords
W
WAIT Waits a specified time or for TRANSFER events.
WHERE Returns the logical pen position.
WHILE Repeats an action while a condition is true.
WIDTH See PRINTALL IS and PRINTER IS.
WILDCARDS Enables or disables wildcard support.
WINDOW Sets the bounds for displayable graphics data in user defined units.
WORD See ASSIGN.
WRITEIO Writes to a hardware register or a memory byte/word.

Keywords
X
XREF Generates a cross reference of a program.

Keywords
Z
ZERO This ASSIGN option is not supported.

 Chapter 4
Keyword Dictionary

The following pages contain the HTBasic keywords listed in dictionary fashion.
Each entry includes a syntax diagram, sample statements, a description of the
keyword's functionality and related keywords. The previous chapters present
material helpful in understanding the "Keyword Dictionary." Chapter 1 explains
the format used and typographical conventions. Chapter 2 defines terms used
to present the syntax of each keyword. And Chapter 3 contains a table
showing which statements can be executed from the keyboard, stored in a
program or included in an IF...THEN statement.

ABORT
Stops IEEE-488 activity.
Syntax: ABORT { interface-select-code | @io-path }

Sample: ABORT 7
ABORT Isc
ABORT @Code

Description:
This command is only legal on the IEEE-488 interface. If the computer is the
system controller but not the active controller, ABORT causes the computer to
assume active control.
If a primary address is specified, an error is generated. If the computer is the
system controller, the bus action is to issue IFC for greater than 100 micro-
seconds and then to assert REN and de-assert ATN. If the computer is not the
system controller but is the active controller, the bus action is: ATN, MTA, UNL
and de-assert ATN. If it is also not the active controller, no action is taken.

See Also:
CLEAR , LOCAL , PASS CONTROL , PPOLL , REMOTE , REQUEST , SEND , SPOLL ,
TRIGGER

ABORTIO
Stops an active TRANSFER.
Syntax: ABORTIO @io-path

Sample: ABORTIO @Isc
ABORTIO @Device

Description:
The io-path must be assigned to an interface select code or device selector,
not the BUFFER. If an ON EOT branch is enabled, it will be called. If there is no
active TRANSFER on the io-path, then ABORTIO has no effect. If a TRANSFER
was stopped because of an error, ABORTIOreports the error.

See Also:
BREAK, ON EOR, ON EOT, RESET, TRANSFER, WAIT

ABS
Returns the absolute value of an expression.
Syntax: ABS(numeric-expression)

Sample: J=ABS(X*5)
PRINT "Total losses=";ABS(Sum)
R=ABS(SIN(Theta))

Description:
For REAL and INTEGER arguments, the result of the ABSfunction is the same
type as the argument. Note that ABS(-32768) generates an error because the
result, 32768, exceeds the INTEGER range.

COMPLEX Arguments
For COMPLEX arguments, ABS returns the absolute value (magnitude or
modulus) of the argument. The absolute value of a number CMPLX(X,Y) is the
distance from the origin to the point (X,Y) in the complex plane:

ABS(CMPLX(X,Y)) = SQRT(X^2+Y^2)

Notice that intermediate values generated during the calculation of the
function can cause over or underflow errors for very large or small values of X
and Y. Complex numbers are stored in rectangular form, but may be used in
polar form using ABS and ARG. For example:
PRINT "Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

To enter a number in polar form, convert it from polar form to rectangular in
this manner:
10 INPUT Magnitude,Angle
20 Z=CMPLX(Magnitude*COS(Angle), Magnitude*SIN(Angle))

See Also:
ARG, FRACT, INT, SGN

ACS
Returns the arccosine of an expression.
Syntax: ACS(numeric-expression)

Sample: Alpha=ACS(R0)
Angle=ACS(Cosine)
PRINT "Angle = ";ACS(Z)

Description:
ACS returns the arccosine of a numeric expression whose value is between -1
and +1 inclusive. The arccosine of a number is the angle whose cosine is that
number. ACS returns a value between 0 and PI radians or 180 degrees,
depending on the current trigonometric mode. The default trigonometric mode
is radians.

COMPLEX Arguments
ACS accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the angle is returned in radians,
regardless of the current trigonometric mode. ACS returns the principal value,
defined (in terms of complex arithmetic) as

ACS(Z) = CMPLX(0,-1)*LOG(Z+CMPLX(0,1)*SQRT(1-Z^2))

which returns a real part in the range 0 to PI. The domain for COMPLEX
arguments includes all points in the complex plane (but for REAL arguments,
the domain is still -1 to +1 inclusive). Notice that intermediate values
generated during the calculation of the function can cause over or underflow
errors for very large or small values of Z.

See Also:
ASN, ATN, COS, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

ACSH
Returns the hyperbolic arccosine of an expression.
Syntax: ACSH(numeric-expression)

Sample: Angle=ACSH(Hcosine)
PRINT "Complex Angle = ";ACSH(Z)

Description:
The hyperbolic arccosine of a number is the angle whose hyperbolic cosine is
that number. The angle is returned in radians, regardless of the current
trigonometric mode. ACSH returns the principal value, defined (in terms of
complex arithmetic) as

ACSH(Z) = LOG(Z+CMPLX(0,1)*SQRT(1-Z^2))

which returns an imaginary part in the range 0 to PI. ACSH accepts either a
COMPLEX or REAL argument and returns a value of the same type. The
domain for COMPLEX arguments includes all points in the complex plane, but
for REAL arguments, the domain is only defined for points ³ 1. Notice that
intermediate values generated during the calculation of the function can
cause over or underflow errors for very large or small values of Z.

See Also:
ACS, ASNH, ATNH, COSH, SINH, TANH

ALLOCATE
Dynamically allocates string variables and arrays.
Syntax: ALLOCATE item [,item...]

where: item = [type] numeric-array (bounds) |
variable-name$ [(bounds)] '['length']'
type = REAL | INTEGER | COMPLEX
bounds = [lower-bound:] upper-bound [,bounds...]

Sample: ALLOCATE Chart(Down:Up)
ALLOCATE M$[LEN(N$)+1]
ALLOCATE Group$(Section)[50]
ALLOCATE INTEGER Myarray(Type,3,5)

Description:
The lower and upper bound range is -32,768 through +32,767, with the
default lower bound range being the OPTION BASE (0 or 1). The string length
is a numeric expression rounded to an integer in the range of 1 through
32,767.

ALLOCATE variables cannot appear in COM, COMPLEX, DIM, INTEGER or REAL
declaration statements or be be declared in the subprogram parameter list.

DEALLOCATE frees allocated memory, but because of stack requirements the
freed memory does not become available unless all allocated items are also
deallocated. In addition, ON event statements also use the stack and will not
allow the deallocated memory to be available for use until the ON event
statements are released from the stack. Memory ALLOCATEd within a
subprogram is DEALLOCATEd upon exit of that subprogram.

After a variable has been deallocated, it can be reallocated with a different
size as long as it has the same type and number of dimensions.

Porting Issues
Under HTBasic, GOSUB and ALLOCATE use the same stack. Intermixing these
statements can cause changes in available memory that are different from HP
BASIC. This usually does not cause problems.

See Also:
COM, COMPLEX, DEALLOCATE, DIM, INTEGER, OPTION BASE, REAL, REDIM

ALPHA
Controls the visibility of the ALPHA screen area.
Syntax: ALPHA { ON | OFF }

Sample: ALPHA ON
IF Display THEN ALPHA OFF

Description:
ALPHA ON makes the alpha screen visible; ALPHA OFF makes it invisible.
The current screen driver has an effect on the execution of this statement as
explained in the following paragraphs. See PLOTTER IS for an explanation of
the screen drivers.

If the CRTA screen driver is being used, turning the ALPHA screen ON turns
the GRAPHICS screen off and vice-versa. Any time the GRAPHICS screen is
turned off, it is cleared.

If the CRTB screen driver is being used, ALPHA ON/OFF has no effect when
ALPHA and GRAPHICS are MERGEd. SEPARATE ALPHA must be executed
before this statement has any effect.

See Also:
CLEAR SCREEN, GRAPHICS, MERGE ALPHA WITH GRAPHICS, PLOTTER IS,
SEPARATE ALPHA FROM GRAPHICS

ALPHA HEIGHT
Sets the number of lines used for the ALPHA screen.
Syntax: ALPHA HEIGHT [number-of-lines]

Sample: ALPHA HEIGHT Num
ALPHA HEIGHT 12

Description:
The optional number-of-lines is a numeric expression rounded to an integer
and must be nine or greater. The bottom number-of-lines of the CRT are
reserved for the alpha display. This can be useful in reserving the top of the
CRT for the display of graphics. This command is equivalent to a CONTROL
CRT,13;lines. If the number-of-lines is not specified, it is reset to the default.

If you are using SEPARATE ALPHA FROM GRAPHICS, you must specify a pen-
number that intersects with the alpha write enable mask. For example, on a
16 color display, the mask is 8 when SEPARATE. If pen-numbers of 0 to 7 are
used, they won't intersect the mask and no alpha text will be written.

See Also:
ALPHA PEN, KBD LINE PEN, KEY LABELS PEN, PRINT PEN

ALPHA PEN
Sets the ALPHA display color.
Syntax: ALPHA PEN pen-number

Sample: ALPHA PEN Color
ALPHA PEN 137
IF Red THEN ALPHA PEN 2

Description:
This statement overrides any ALPHA PEN, PRINT PEN, KBD LINE PEN or KEY
LABELS PEN statements in effect. The pen-number is a numeric expression
rounded to an integer. If you are using the CRTB screen display driver legal
values are from 0 to 15. (HP BASIC supports 255.) If you are using the CRTA
display driver, legal values are from 136 to 143. This statement is equivalent
to CONTROL CRT,5;pen-number.

See Also:
COLOR, KBD LINE PEN, KEY LABELS PEN, PRINT PEN

AND
Performs the logical conjunction of two expressions.
Syntax: numeric-expression AND numeric-expression

Sample: IF A AND B THEN C
First=Last AND Ready
A=Age>19 AND Reply$="YES"

Description:
AND returns a value of one (true) or zero (false) from the logical conjunction
of two expressions. The value of j AND k, where j and k are themselves
numeric expressions is one (true) only if both j and k are non-zero. It is zero
(false) if either or both j and k are zero. AND can be used in combination with
other logical or math operators in numeric expressions.

See Also:
EXOR, OR, NOT

AREA
Sets or defines an AREA fill color.
Syntax: AREA COLOR hue, saturation, luminosity

AREA INTENSITY red, green, blue
AREA PEN pen-number

Sample: AREA COLOR Hue,Sat,Lum
AREA INTENSITY Red(I),Green(I),Blue(I)
AREA PEN 11
AREA PEN -Numb

Description:
AREA allows you to specify the color used to fill areas. See COLOR for an
explanation of how to specify colors with COLOR, INTENSITY and PEN. The
effect of different pen numbers is given in the Drawing Mode Table, below.

If you specify a color with COLOR or INTENSITY which cannot be produced on
the computer system you are using, the color may be approximated by using
an available color which is close to the color specified. On some displays this
may include dithering available colors to produce a color closer to the one you
specified. If dithering is used, the statement will execute slower than an AREA
PEN statement.

The default area fill color is PEN one. The color defined by AREA remains the
area fill color until an AREA, GINIT or SCRATCH A is executed. IPLOT, PLOT,
RPLOT or SYMBOL can also be used to change the area fill color.

Drawing Mode Table
The writing mode of the pen is specified by the current drawing mode and the
sign of the pen number. GESCAPE CRT,4 is used to change to normal drawing
mode. GESCAPE CRT,5 is used to change to alternate drawing mode. The
following table defines the different writing modes available. P is a positive
pen number, X is the present value of a pixel.

GESCAPE CRT,4 GESCAPE CRT,5
Statement Normal Alternate                         
AREA PEN P P BINIOR(X,P)
AREA PEN 0 0 0
AREA PEN -P BINAND(X,BINCMP(P)) BINAND(X,BINCMP(P))

See Also:
COLOR, GESCAPE, IPLOT, PEN, PLOT, RPLOT, SYMBOL

ARG
Returns the Argument (Angle) of a complex number.
Syntax: ARG(numeric-expression)

Sample: PRINT "Angle = ";ARG(CMPLX(1,2))

Description:
The Argument of a complex number is the angle in the complex plane
between the positive real axis and a vector to the complex number. Positive
angles are counter-clockwise from the positive real axis. ARG returns the
principal value which has a range of -PI to PI radians or -180 to 180 degrees,
depending on the current trigonometric mode. Note that the ARG of a real
number can be either 0 or PI (180), depending on whether the number is
positive or negative. COMPLEX numbers are stored in rectangular form, but
may be used in polar form using ABS and ARG. For example:
PRINT "Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

To enter a number in polar form, convert it from polar form to rectangular in
this manner:
10 INPUT Magnitude,Angle
20 Z=CMPLX(Magnitude*COS(Angle), Magnitude*SIN(Angle))

See Also:
ABS, CMPLX, DEG, IMAG, RAD, REAL

ASN
Returns the arcsine of an expression.
Syntax: ASN(numeric-expression)

Sample: Beta=ASN(T1)
PRINT "Angle = ";ASN(Sine)

Description:
The arcsine of a number is the angle whose sine is that number. ASN returns
a value between ±PI/2 radians or ±90 degrees. The default trigonometric
mode is radians unless changed with the DEG statement. Its argument must
be a value between -1 and 1 inclusive.

COMPLEX Arguments
ASN accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the angle is returned in radians,
regardless of the current trigonometric mode. ASN returns the principal value,
defined (in terms of complex arithmetic) as

ACS(Z) = CMPLX(0,-1)*LOG(CMPLX(0,1)*Z+SQRT(1-Z^2))

which returns a real part in the range -PI/2 to PI/2. The domain for COMPLEX
arguments includes all points in the complex plane (but for REAL arguments,
the domain is still -1 to 1, inclusive). Notice that intermediate values
generated during the calculation of the function can cause over or underflow
errors for very large or small values of Z.

See Also:
ACS, ATN, COS, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

ASNH
Returns the hyperbolic arcsine of an expression.
Syntax: ASNH(numeric-expression)

Sample: Beta=ASNH(T1)
PRINT "Angle = ";ASNH(Z)

Description:
The hyperbolic arcsine of a number is the angle whose hyperbolic sine is that
number. The angle is returned in radians, regardless of the current
trigonometric mode. ASNH returns the principal value, defined (in terms of
complex arithmetic) as

ASNH(Z) = LOG(Z+SQRT(Z^2+1))

which returns an imaginary part in the range -PI/2 to +PI/2. ASNH accepts
either a COMPLEX or REAL argument and returns a value of the same type.
ASNH is defined at all points for both COMPLEX and REAL arguments.
However, intermediate values generated during the calculation of the function
can cause over or underflow errors for very large or small values of Z.

See Also:
ACSH, ASN, ATNH, COSH, SINH, TANH

ASSIGN
Sets up an I/O path and its attributes.
Syntax: ASSIGN @io-path [TO resource] [;attrib [,attrib...]]

ASSIGN @io-path TO *

where: resource = device-selector [,device-selector...] |
file-specifier |
pipe-specifier |
BUFFER {string-name$ | numeric-array(*) | '['buf-size']'}
attrib = FORMAT {ON|OFF|MSB FIRST|LSB FIRST} | {BYTE | WORD} |
CONVERT {IN|OUT} {OFF | {BY {INDEX|PAIRS} convert$}} |
PARITY {EVEN | ODD | ONE | ZERO | OFF} |
EOL eol-chars [END] [DELAY seconds] | EOL OFF |
RETURN numeric-name | APPEND
buf-size = size of the buffer in bytes
convert$ = string-name. If INDEX, it can have up to
256 characters. If PAIRS, it must have an even
number of characters.
eol-chars = string-expression of up to 8 characters
seconds = numeric-expression rounded to the nearest
0.001 through 32.767 (default is 0)

Sample: ASSIGN @Code TO Isc;FORMAT OFF
ASSIGN @Close TO *
ASSIGN @Devices TO 711,712,715
ASSIGN @Buf1 TO BUFFER Str1$
ASSIGN @B TO BUFFER [12800]
ASSIGN @Buffer TO BUFFER Array(*)
ASSIGN @File TO "C:\MSDOS\FILE2"
ASSIGN @File TO "/unix/CityDir/StFile";APPEND
ASSIGN @T TO 12;WORD,RETURN R,EOL My$ DELAY 1
ASSIGN @Stdout TO "| cat";EOL CHR$(10)
ASSIGN @Pipe TO "finger |"

Description:
ASSIGN makes a connection between a file, buffer, device, or devices and an
I/O path name. An I/O path contains the necessary information to control the
input or output of data. It is used in I/O statements to specify the source or
destination of the input or output. An I/O path name can be placed in a COM
statement and can be passed by reference as an argument to subprograms.
I/O operations can be re-directed by re-ASSIGNing the I/O path. ASSIGN may
also be used to change previous I/O path attributes or to close an I/O path.

Devices
To do I/O with an IEEE-488 device which has a primary address of 2, you would
use the ASSIGN statement (assuming the default IEEE-488 interface select
code of 7):
ASSIGN @io-path TO 702

To do I/O with a device hooked to the serial port (assuming the port is at the
default ISC of 9), you would use:
ASSIGN @io-path TO 9

A device can have more than one I/O path name (each with different
attributes) associated with it.

An I/O path name can have more than one device assigned to it. If multiple
devices are specified, they must be on the same interface. When OUTPUT is
made to an I/O path assigned to multiple devices, all the devices receive the
data. When ENTER is made from multiple devices, the first device specified
sends data to the computer and to all the other devices assigned to the I/O
path name. When CLEAR, LOCAL, PPOLL CONFIGURE, PPOLL UNCONFIGURE,
REMOTE or TRIGGER are made on multiple devices, all the devices receive the
IEEE-488 message.

Files
A file is opened when the ASSIGNstatement specifies a file-specifier. The file's
position pointer is set to the beginning of the file unless APPEND is specified
and is updated to point to the next byte to be read or written with each ENTER
or OUTPUT statement.

Pipes
Pipes are supported under UNIX, but not under DOS. A process is created with
the command specified in the pipe-specifier. If the pipe-specifier begins with
the "|" pipe character, then OUTPUT can be used to send information to the
process. If the pipe-specifier ends with the pipe character, then ENTER can be
used to get information from the process.

Buffers
The statement
ASSIGN @Io_path TO BUFFER [300]

creates an unnamed buffer and assigns it an I/O path name. The
ASSIGN @Io_path TO BUFFER X(*)

statement assigns an I/O path name to a buffer variable previously declared in
a COM, COMPLEX, DIM, INTEGER or REAL statement. The buffer specified in
ASSIGN may now be used in ENTER, OUTPUT or TRANSFER statements. Buffer
control information can be read with the STATUS statement and includes the
current number of bytes in the buffer (initially set to 0), the empty and the fill
pointers (initially set to 1) and the buffer capacity.

An I/O path name must exist for as long as its assigned buffer exists. To insure
this, the following rules are used: Buffers cannot be declared in ALLOCATE
statements. For a named buffer and its associated I/O path name, if either
appear in a COM block, then the other must also. The same is true of
subprogram parameters or else the buffer must appear in a COM block
accessible to the subprogram. I/O path names assigned to unnamed buffers
cannot appear in COM blocks or subprogram parameters.

Unnamed buffers can only be accessed through their I/O path names. When
the I/O path of an unnamed buffer is closed, the buffer space is deallocated.
Named buffers can be directly accessed through their variable names,
although this is not generally recommended. It does not perform necessary
byte order swapping. And the data in the buffer can be changed without
proper update of the buffer control registers (empty and fill pointers, current
number of bytes). To automatically update the buffer control registers use the
ENTER, OUTPUT, and TRANSFER statements.

Binary data in a buffer exists in the byte order of the data source. If that order
is different than the byte order of the computer, then accessing the data
through the variable name results in incorrect data. Again, using ENTER,
OUTPUT and TRANSFER to access the data handles the byte order correctly.

FORMAT
The FORMAT option controls whether data is handled in binary or ASCII. If
FORMAT is not explicitly specified a default format is used as specified in the
chart below. In addition to the HP BASIC compatible FORMAT ON and
FORMAT OFF options, HTBasic also allows the FORMAT MSB FIRST and
FORMAT LSB FIRST options. These options allow explicit specification of the
data byte ordering. If LSB FIRST is specified, then numbers are sent and
received with the Least Significant Byte first. If MSB FIRST is specified, then
numbers are sent and received with the Most Significant Byte first.

On an IBM PC or compatible, LSB is the native byte order. If a device is
capable of sending binary data in LSB format, it should be instructed to do so
and FORMAT LSB FIRST should be specified instead of FORMAT OFF.

On a Sun SPARCstation or HP Series 700 computer, MSB is the native byte
order, so the MSB/LSB FIRST extensions are not normally needed.

BYTE and WORD
When BYTE is included in the ASSIGN statement the data is sent and
received as 8-bit bytes. WORD sends and receives data in 16-bit words and
can only be used on a 16-bit interface. The default form if neither BYTE nor
WORD is explicitly specified is BYTE.

CONVERT
When CONVERT is included in the ASSIGN statement a character-conversion
table is used during OUTPUT and ENTER operations (OUT converts during
OUTPUT and IN converts during ENTER). The default attribute is no conversion
(CONVERT IN OFF and CONVERT OUT OFF). If CONVERT OUT is specified
then conversions are made after EOL characters are appended but before
parity generation (if PARITY specified). If CONVERT IN is specified then
conversions are made after parity check but before item or statement
terminators are checked.

When BY INDEX is included, an index system is used in the conversion
process. Each original character is used as an index into the conversion string.
CHR$(1) is replaced by the 1st character, CHR$, (2) is replaced the 2nd
character, etc. Note however that CHR$, (0) is replaced by the 256th
character in the conversion string.

When BY PAIRS is included, pairs of characters are used in the conversion
process (the original character and its replacement character). The original
characters (odd characters) are searched in the conversion string. If the
original is found it is replaced by the next (replacement) character. If the
original is not found, then no conversion takes place.

Note: CONVERT is not supported in HTBasic.

PARITY
The most significant bit of the byte is considered the parity bit. On OUTPUT,

parity is calculated after any CONVERT. On ENTER, parity is checked before
any CONVERT.

Note: The PARITY option to ASSIGN is not supported in HTBasic. The parity
for the serial interface should be set using the appropriate CONTROL register.

EOL
The default End-Of-Line is a carriage-return (CR) and line-feed (LF) sent with
no END indication and no DELAY. Specifying END causes an interface specific
END indication to be sent with the EOL. On the IEEE-488, END causes EOI to
be sent with the final character of the EOL. Specifying DELAY causes the
computer to pause for the specified number of seconds after sending the EOL
and before allowing the program to continue. The delay time depends on the
timing resolution available on the computer you are using. The default EOL
can be restored by specifying EOL OFF.

Under UNIX, it is conventional to use a plain LF as the End-Of-Line. For
example,
ASSIGN @I TO "/etc/mtab";EOL CHR$(10)

Note:    LF or CR/LF are always used to terminate ENTER data, regardless of
the setting of EOL in the ASSIGN statement.

RETURN
RETURN can be used with ASSIGN to test whether the ASSIGN operation
was successful. If not successful the error number is returned in the variable
specified, otherwise a zero is returned.

APPEND
If APPEND is specified, the file position is moved to the end-of-file after the
ASSIGN. If it is not specified, the file position is moved to the beginning of the
file. APPEND is supported on BDAT and ordinary files, but not LIF ASCII files.

Close I/O Paths
Closing an I/O path makes the path invalid. All subsequent ON event
statements for the closed I/O path are not acted upon. If an I/O path name has
not been declared in a COM statement it may be closed in the following ways:

1. explicitly close a path by executing: ASSIGN @io-path TO *
2. re-assigning the I/O path: ASSIGN @path TO resource
3. exiting the subprogram: SUBEND, SUBEXIT, ON...RECOVER, or RETURN...
4. stopping the program: END, GET, LOAD, SCRATCH, SCRATCH A, SCRATCH C
or STOP

If an I/O path name has been declared in a COM statement it may be closed in
the following ways:

1. explicitly close a path by executing: ASSIGN @io-path TO *
2. executing SCRATCH A or SCRATCH C
3. executing EDIT, GET, LOAD in a program that has a COM statement that
does not match the COM statement that contains the I/O path name.

Changing Attributes
The attributes of a previously ASSIGNed I/O path may be individually changed
by omitting "TO resource" in the ASSIGN statement. To restore all default
attributes use ASSIGN@io-path.

Porting From HP BASIC
When an ASSIGN fails, the previous state of the I/O path is not preserved.
Also, the CONVERT and PARITY options are not implemented.

Under DOS, if changes are made to an ASSIGNed file, the directory entry is
not updated until the file is closed. DOS buffers reads and writes to disk. You
should not remove a diskette or turn the power off while a file is ASSIGNed.
Exchanging diskettes while a file is ASSIGNed on the first can destroy the
next diskette. Two I/O paths ASSIGNed simultaneously to the same file can
produce slightly different results than HP BASIC, depending on the buffering
DOS does.

The HTBasic ASSIGN includes two new options, FORMAT LSB FIRST and
FORMAT MSB FIRST, to specify byte ordering of binary numeric data
transfers. This provides the ability to do binary transfers with any device or
computer, regardless of the byte ordering that device uses.

See Also:
CREATE, CREATE ASCII, CREATE BDAT, PURGE, ENTER, OUTPUT

ATN
Returns the arctangent of an expression.
Syntax: ATN(numeric-expression)

Sample: C2=ATN(4.5)
PRINT "Angle = ";ATN(Ang1)

Description:
The arctangent of a number is the angle whose tangent is that number. ATN
returns a value between ±PI/2 radians or ±90 degrees, depending on the
current trigonometric mode. The default trigonometric mode is RAD. Use DEG
to change to degrees.

COMPLEX Arguments
ATN accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the angle is returned in radians,
regardless of the current trigonometric mode. ATN returns the principal value,
defined (in terms of complex arithmetic) as

ATN(Z) = CMPLX(0,1/2)*LOG((CMPLX(0,1)+Z)/(CMPLX(0,1)-Z))

which returns a real part in the range -PI/2 to PI/2. The domain for COMPLEX
arguments includes all points in the complex plane except CMPLX(0,1). Notice
that intermediate values generated during the calculation of the function can
cause over or underflow errors for very large or small values of Z.

See Also:
ACS, ASN, COS, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

ATNH
Returns the hyperbolic arctangent of an expression.
Syntax: ATNH(numeric-expression)

Sample: C2=ATNH(CMPLX(4.5,2))
PRINT "Angle = ";ATNH(Z)

Description:
The hyperbolic arctangent of a number is the angle whose hyperbolic tangent
is that number. The angle is returned in radians, regardless of the current
trigonometric mode. ATNH accepts either a COMPLEX or REAL argument and
returns a value of the same type. For REAL arguments the domain is between
-1 and 1. For complex arguments, ATNH returns the principal value, defined
(in terms of complex arithmetic) as

ATNH(Z) = 1/2*LOG((1+Z)/(1-Z))

which returns an imaginary part in the range -PI/2 to PI/2. The domain for
COMPLEX arguments includes all points in the complex plane except
CMPLX(±1,0). Notice that intermediate values generated during the
calculation of the function can cause over or underflow errors for very large or
small values of Z.

See Also:
ACSH, ASNH, COSH, SINH, TANH

ATN2
Returns the angle to a point.
Syntax: ATN2(y, x)

where: x and y = numeric-expressions

Sample: PRINT "Angle=";ATN2(1,2)

Description:
ATN2(x,y) returns the angle between the positive real axis and a vector to the
point (x,y). Positive angles are counter-clockwise from the x axis. ATN2
returns a value in the range of -PI to PI radians or -180 to 180 degrees,
depending on the current trigonometric mode. ATN2(0,0) is undefined and
causes an error.

ATN2(y,x) is so named because of its similarity to ATN(y/x). However, ATN(y/x)
does not calculate correct angles for points in the 2nd and 3rd quadrants. In
some languages, this function is named ANGLE(x,y). In HTBasic, it is named
ATN2(y,x) to match HP Series 80 BASIC.

Porting to HP BASIC
ATN2 is a new HTBasic function that is not available in HP BASIC. It should not
be used in programs that must be ported back to HP BASIC.

See Also:
ABS, ARG, DEG, RAD, SQRT

AXES
Draws x-y axes.
Syntax: AXES [x1 [,y1 [,x2 [,y2 [,x3 [,y3 [,major]]]]]]]

where: x1,y1 = numeric-expressions, x,y tick spacing
x2,y2 = numeric-expressions, x,y origin of axis
x3,y3 = numeric-expressions, rounded to integers, major tick counts
(range 1 through 32767)
major = numeric-expression, rounded to an integer, major tick size

Sample: AXES 5,5,0,100
AXES X,Y,Midx,Midy,Maxx/10,Maxy/10

Description:
The AXES statement draws X-Y axes. You may specify the tic spacing on each
axis in WINDOW units by giving two arguments, one for the x tic spacing and
one for the y tic spacing; the default 0,0 means don't draw ticks. You may then
specify the axes origin in WINDOW units; the default is 0,0. Also, you may
specify the number of ticks between major tick marks; the default is 1,1
meaning that every tick is major. Lastly, you may specify the major tick size in
VIEWPORT units; the default is 2.

The axes extend across the soft-clip area and the tick marks are symmetric
about the axes but are clipped by the soft-clip area. If the x or y axis is outside
the clip area, then tick marks are drawn into the non-clip area. The axes and
tick marks are drawn in the current line style and pen color. A major tick is
placed at the axis origin. The minor tick marks are half the size of the major
tick marks.

See Also:
FRAME, GRID, LINE TYPE, PEN

BASE
Returns the lower bound of an array dimension.
Syntax: BASE(array-name[$],dimension)

where: dimension = integer between 1 and 6 £ RANK of array

Sample: Lwr=BASE(Yarray$,Dim)
Uppr(2)=BASE(A,2)+SIZE(A,2)-2

Description:
BASE returns the current lower bound of an array dimension. This might be
different than the DIMensioned value if a REDIM or matrix statement has
changed it. This function is also useful in a subprogram where an array is
passed in as one of the parameters.

See Also:
ALLOCATE, DIM, OPTION BASE, RANK, REDIM, SIZE

BEEP
Generates music or sound effects.
Syntax: BEEP [frequency, duration]

Sample: BEEP
BEEP Tone,Seconds
BEEP Freq,Duration
BEEP 75.5*Freq,Sec

Description:
BEEP generates a frequency for a specified duration in seconds. On
computers that do not provide control for variable frequency sound
generation, BEEP generates a beep or bell sound. The range of the duration is
0 to 2.55 and is rounded to the nearest 0.01 seconds, subject to the timing
resolution of your computer system. The value 2.55 is used for any duration
greater than 2.55. If no frequency or duration is specified, a 1220.7 Hz beep is
generated for 0.2 seconds.

DOS Usage Notes
Under DOS, the period (not the frequency) is rounded to a multiple of 0.838
micro-seconds. The range of frequencies is 40.7 Hz to 32.767 KHz. (HP BASIC
rounds the frequency value to a multiple of 81.38 Hz and supports a range of
81 Hz to 5.208 KHz.) Under Windows 3.1, BEEP generates a single beep.

UNIX Usage Notes
The -beep command line switch determines whether the BEEP statement uses
the console to produce the tone or whether it uses the CRT driver to produce
the tone (in some driver-specific manner). By default, the console is used to
produce the tone. This is not always the appropriate behavior, as would be the
case when running remotely.

On the Sun Version, the console uses the /dev/audio device to produce the
tone. The period is rounded to a multiple of 125 micro-seconds. Consequently,
the number of frequencies is very limited. For example, above 1000 Hz the
only frequencies available are 1143, 1333, 1600, 2000, 2667 and 4000.

If the X Windows CRT driver is producing the tone, then the results vary
according to the X Server. OpenWindows 2.0 always produces a tone of 2400
Hz, although the duration of the BEEP statement matches the duration
specified. HP-VUE produces the requested frequency, but allows the program
to continue immediately while the tone is sounding.

See Also:
SOUND

BINAND
Performs a bit by bit logical AND.
Syntax: BINAND(arg, arg)

where: arg = numeric-expression rounded to an INTEGER range -32768 to +32767

Sample: I=BINAND(J,K)*6
IF BINAND(Low,4) THEN CALL Set

Description:
Use BINAND to clear or test specific bits. BINAND(A,B) converts the values of
A and B to integers. The integer values of A and B are then treated as
unsigned binary numbers. Corresponding bits in A and B are then ANDed
together. If both corresponding bits in A and B are a 1 the resulting bit is set to
a 1 otherwise it is set to a 0. The following example:
BINAND(12,6)

performs a bit by bit logical AND of 12 with 6.

12 = 0000000000001100
6 = 0000000000000110
BINAND(12,6) = 0000000000000100

The resulting binary number represents 4.

See Also:
BINCMP, BINEOR, BINEQV, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINCMP
Performs a bit by bit complement.
Syntax: BINCMP(arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: B=BINCMP(A)

Description:
The result of BINCMP(A) is calculated by first converting the value of A to an
integer. The integer value of A is then treated as a binary number. Each bit of
the result is set to 1 if the corresponding bit of A is 0 and is set to 0 if the
corresponding bit of A is 1. Here is an example of how BINCMPworks:
BINCMP(13)

The number 13 is considered a binary number, then the bitwise complement
is performed:

13 = 0000000000001101
BINCMP(13) = 1111111111110010

The resulting binary number represents -14.

See Also:
BINAND, BINEOR, BINEQV, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINEOR
Performs a bit by bit exclusive OR (EXOR).
Syntax: BINEOR(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: M=BINEOR(J,K)
Toggle=BINEOR(Toggle,4)

Description:
BINEOR is useful when you want to "toggle" a certain bit or bits.
BINEOR(A,B) converts the values of A and B to integers. The integer values of
A and B are then treated as unsigned binary numbers. Each bit of the result is
set to 1 if exactly one of the corresponding bits for either A or B is 1 and is set
to 0 if the corresponding bits of A and B are both 0 or both 1. An example of
BINEOR follows:
BINEOR(12,6)

The numbers 12 and 6 are considered binary numbers, then the bitwise
exclusive OR is performed.

12 = 0000000000001100
6 = 0000000000000110
BINEOR(12,6) = 0000000000001010

The resulting binary number represents 10.

See Also:
BINAND, BINCMP, BINEQV, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINEQV
Performs a bit by bit equivalence operation.
Syntax: BINEQV(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: J=BINEQV(&HFF00,Var)
I=BINEQV(15,J)

Description:
The result of BINEQV(A,B) is calculated by converting A and B to integer
values. Then each bit of the result is set to 1 if the corresponding bits in A and
B are equal. This table illustrates this relationship.

A B BINEQV(A,B)
0 0 1
0 1 0
1 0 0
1 1 1

The following example:
BINEQV(12,6)

performs a bit by bit equivalence of 12 and 6.

12 = 0000000000001100
6 = 0000000000000110
BINEQV(12,6) = 1111111111110101

The resulting binary number represents -11.

Porting to HP BASIC
BINEQV is a new HTBasic function that is not available in HP BASIC. It should
not be used in programs that must be ported back to HP BASIC.

See Also:
BINAND, BINCMP, BINEOR, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINIMP
Performs a bit by bit implication operation.
Syntax: BINIMP(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: K=BINIMP(Var,&O377)
I=BINIMP(12,J)

Description:
The result of BINIMP(A,B) is calculated by converting A and B to integer
values. Then each bit of the result is set to 1 or 0 depending on the
corresponding bits in A and B. The following truth table defines the implication
operation:

A B BINIMP(A,B)
0 0 1
0 1 1
1 0 0
1 1 1

Note that the operation is not commutative. That is, BINIMP(A,B) <>
BINIMP(B,A). The following example:
BINIMP(12,6)

performs a bit by bit implication of 12 and 6.

12 = 0000000000001100
6 = 0000000000000110
BINIMP(12,6) = 1111111111110111

The resulting binary number represents -9.

Porting to HP BASIC
BINIMP is a new HTBasic function that is not available in HP BASIC. It should
not be used in programs that must be ported back to HP BASIC.

See Also:
BINAND, BINCMP, BINEOR, BINEQV, BINIOR, BIT, ROTATE, SHIFT

BINIOR
Performs a bit by bit inclusive OR.
Syntax: BINIOR(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: Set=BINIOR(Byte,Bit)
Msb=BINIOR(-1,2^14)

Description:
BINIOR can be used to set specific bits. BINIOR(A,B) converts the values of A
and B to integers. The integer values of A and B are then treated as unsigned
binary numbers. Each bit of the result is set to 1 if the corresponding bit of
either A or B is 1, and 0 if the corresponding bits of both A and B are 0. An
example of BINIOR is:
BINIOR(12,6)

The numbers 12 and 6 are considered binary numbers, then the bitwise OR is
performed.

12 = 0000000000001100
6 = 0000000000000110
BINIOR(12,6) = 0000000000001110

The resulting binary number represents 14.

See Also:
BINAND, BINCMP, BINEQV, BINIMP, BINEOR, BIT, ROTATE, SHIFT

BIT
Allows any bit in an INTEGER to be tested.
Syntax: BIT(arg, bit-position)

where: arg = numeric-expression rounded to an INTEGER
bit-position = numeric-expression rounded to an INTEGER

Sample: Db1=BIT(Db1,4)
Flag=BIT(byte,0)
IF BIT(Byte,Abit) THEN PRINT "Bit #"; Abit;"is on"

Description:
Use BIT to test any bit in an integer without having to manually search the
integer for the desired bit value. The bit positions are numbered from 0 to 15
with 0 being the right-most or least significant bit position. If the bit is set BIT
returns a 1, otherwise BIT returns a 0. An example of BIT follows:
BIT(12,3)

The number 12 is considered a binary number and tested in this manner:

12 = 0000000000001100
Bit 3 = 0000000000001000
BIT(12,3) = 1

The result is 1 because bit 3 is set in the number 12.

See Also:
BINAND, BINCMP, BINEQV, BINIMP, BINEOR, BINIOR, ROTATE, SHIFT

BREAK
Sends a BREAK on a serial interface.
Syntax: BREAK { @io-path | interface-select-code }

Sample: BREAK 9
BREAK @Serial

Description:
A BREAK signal is sent by manipulating the Data Out signal in the following
manner: a logic high of 400-ms is sent followed by a logic low of 60-ms. The
BREAK is sent immediately. The interface must be a serial interface.

See Also:
ABORTIO, RESET

CALL
Starts execution of specified SUBprogram or CSUB.
Syntax: [CALL] subprogram-name [(argument [,argument...])]

CALL sub-pointer [WITH (argument [,argument...])]

where: sub-pointer = string expression with subprogram name
argument = pass-by-reference    |    pass-by-value
pass-by-reference = @io-path    |    variable-name[$][(*)]    |

string-array-element    |    numeric-array-element
pass-by-value = (variable-name[$])    |    numeric-constant    |

numeric-expression    |    (numeric-array-element)    |
"string-literal"    | string-name$ [(subscripts)] sub-string |
string-expression    |    (string-array-element)

Sample: CALL Deriv(X,Y)
Fft(Array(*))
CALL Test(Ref,(Value),@Source)
CALL A$ WITH (4,1.23,"hello")

Description:
CALL transfers control to the specified SUBprogram. The context is changed
to the SUB and begins running at the statement following the SUB statement.
The subprogram continues to run until it encounters a SUBEND or SUBEXIT, at
which point control returns to the statement after the CALL. If more than one
SUB exists with the same name, control is transferred to the SUB with the
lowest line number. The name of the SUB may be specified explicitly or in a
string expression (sub-pointer):
CALL Clayton ! Explicit
CALL "Clay"&"ton" ! String expression

CALL may also pass arguments to the subprogram. The list of arguments in
the CALL statement must match, in type and number, the list of parameters
in the SUB statement. The CALL statement may pass the arguments by
reference or value as shown in the syntax description above. Pass-by-value
means that the subprogram receives only the value and cannot change any
variables in the calling subprogram. Pass-by-reference means that the
subprogram is told the variable's location in memory (the variable's address),
so that the subprogram can use and modify the variable itself.

The CALL keyword may be omitted if the CALL statement is alone on a line
and the subprogram name is specified explicitly, but if it is part of another
statement, such as an IF, then it is required.

Subprogram Pointers
If a string expression specifies the subprogram name in the CALL statement,
the string expression is called a subprogram pointer because it "points" to the
subprogram rather than explicitly naming it. As the expression changes, the
pointer points to different subprograms. The following example illustrates how
this can be useful.
10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))

50 DELSUB Method$
60 SUBEND

The CALL keyword must be used and the subprogram must be specified with
the initial character in uppercase and subsequent characters in lowercase.
Subprogram pointers can also be used in DELSUB, INMEM, LOADSUB and XREF
statements.

Note: If you must write programs portable back to HP BASIC, don't use
subprogram pointers in DELSUB, LOADSUB, and XREF statements. Also,
HTBasic allows string expressions to be used, while HP BASIC is limited to a
simple string variable.

See Also:
CSUB, DELSUB, LOADSUB, SUB

CAT
Displays a catalog of files or PROG file contexts.
Syntax: CAT [source] [TO destination] [; option [,option...]]

where: source = path-specifier | prog-file-specifier
destination = #device-selector | string-array$(*)
option = COUNT numeric-name | EXTEND | NAMES | NO HEADER |
SELECT begin-characters | SKIP number-of-files
begin-characters = string expression

Sample: CAT
CAT "C:\WP";NO HEADER
CAT "A:" TO #701; SELECT "X",SKIP 1;COUNT Count
CAT "*.TXT"

Description:
Catalogs of Contexts in a PROG file

If a prog-file-specifier is given, a list of the contexts in that file are listed. The
different context types are main context, subprogram contexts, user defined
function subprogram contexts and CSUB contexts. Each context is listed with
its name, size and type.

Catalogs of Files in a Directory
CAT is used to produce a catalog of files that are present in a directory of a
mass storage device. CAT can be used as a program command or statement.
A header is printed and information is given about each file. The format of the
information depends on the file system. However, when CAT is directed to a
string array, it produces the SRM catalog format regardless of the file type.
The EXTEND option can be used to suppress the SRM format so that the
string array is written with the same format as would be displayed on the
screen. The format for each file system, including SRM, is given later in this
entry.

If the file name is too long to give in the space provided by each of the
following formats, an asterisk, "*", will be printed in the last column of the file
name field to indicate that the name has been truncated. For ASCII and BDAT
files, the number of records shown is the number of records specified in the
CREATE statement. This behavior was requested by customers for
compatibility with existing programs. The actual number of records may be
more or less and can be determined by examining STATUS register three of an
I/O Path ASSIGNed to the file. Or the file can be CREATEd with zero records;
CAT then reports the actual number of records.

DOS (FAT) File System
The listing format for the DOS (FAT) file system is designed to be compatible
with HP BASIC/DOS (Viper). The format chosen by HP is very similar to the
format used for the UNIX file system. This is an example of output in DOS
format:
DIRECTORY: C:\HTB
LABEL: DEMO
FORMAT: DOS
AVAILABLE BYTES: 34004992
 FILE NUMBER REC MODIFIED

FILE NAME TYPE RECORDS LEN DATE TIME PERMISSION
============ ===== ======== ===== ========= ===== ==========
HTB.KEY BDAT 2 256 10-Oct-89 14:00 RW-RW-RW-
HP-PCL.D86 BIN 1384 1 21-Nov-91 0:00 RW-RW-RW-
HTB.PIF DOS 545 1 24-Jul-92 11:12 RW-RW-RW-

The following information is given in the header. The number specifies the line
number on which the information is given:

1. Path specifier (volume specifier and full path name).
2. Volume label of the device.
3. The file system type, i.e. DOS or FAT.
4. Amount of free space on the device in bytes (NOT blocks).
5. Column headings for file information.
6. Column headings for file information.

Note that HP BASIC gives the free space in blocks, while HTBasic gives it in
bytes. The file information occurs in the following columns:

Column Information 
1-12 filename or directory name
14-18 file type, BDAT, DIR, PROG, etc.
20-27 number of records in the file
29-33 record length of each record
35-43 modification date in the form DD-MMM-YY
45-49 modification time in the form HH:MM

File Access Permissions
52 read access - An R is always present
53 write access - A W allows write
54 execute flag - An X means executable
55-60 File Access Permissions repeated

The file type is determined in the following manner: The file type is listed as
DIR for a directory and SYSTM if the file has the DOS System Attribute. If the
file has an HTBasic file type header, then the file type (BDAT, ASCII, PROG or
BIN) found in the header is given. If the header can't be read, then "LOCKD" is
given. All other files are ordinary files and are listed with no file type or a file
type of "DOS". If a file has the DOS Hidden Attribute, then the file is not listed.
The DOS Archive Attribute is ignored.

See the note earlier explaining how the number of records is listed. DOS
updates directory entries only when a file is closed. Thus, the length of a file
will not appear to change in a CAT as the file is written.

The file permissions are listed as read, write and execute. To mimic UNIX, they
are repeated three times. The file permissions are determined in the following
manner. The read access, "R", is always set since DOS does not have a deny-
read permission. The write access, "W" is set unless the DOS Read-Only
Attribute is set. The execute flag is set if the file extension is ".BAT", ".COM" or
".EXE" meaning the file can be executed from the DOS command prompt.

Long Filename Format
Under later versions of DOS, and Windows, some file systems allow long
names with embedded spaces. However, by default CAT still uses the FAT
listing format, providing 8.3 compatible filenames. To enable display and use
of long filenames, use the statement

CONFIGURE LONGFILENAMES ON

With LONGFILENAMES ON, spaces are not deleted from directory and file
specifiers since they may be significant. Also, the listing format for CAT is
changed to accommodate varying length filenames. It is roughly modelled
after the NT DIR command. The listing format with LONGFILENAMES ON is
given below.

DIRECTORY: C:\HTBWIN
LABEL: MYDISK
FORMAT: NTFS
AVAILABLE BYTES: 54132736
FILE NUMBER REC MODIFIED
TYPE RECORDS LEN DATE TIME ATTRIB FILE NAME
===== ======== ===== ========= ===== ====== ==================================
DIR 0 1 26-Apr-93 14:04 D Take a look at this file name
BDAT 2 256 10-Oct-89 14:00 A HTB.KEY
BIN 1888 1 30-Dec-92 13:37 A HP-PCL.DW6
 303967 1 25-Aug-92 10:06 A R Data
PROG 706 1 2-Jun-93 14:52 A AUTOST

Note that filenames are listed at the end. Standard DOS or NT file attributes
are also presented. The information in the header is the same as for the FAT
file system. The file information is presented in the following columns:

Column Information 
1-5 file type, BDAT, DIR, PROG, etc.
7-14 number of records in the file
16-20 record length of each record
22-30 modification date in the form DD-MMM-YY
32-36 modification time in the form HH:MM

File Attributes:
38 "A" if Archive Attribute set
39 "D" if Directory Attribute set
40 Always " "
41 "S" if System Attribute set
42 "H" if Hidden Attribute set
43 "R" if Read-only Attribute set
45- filename or directory name

Column 42 will always be blank, since files with the Hidden Attribute are not
listed.

UNIX File System
The listing format for the UNIX file system is designed to be compatible with
HP BASIC/UX. This is an example of output in UNIX format:
DIRECTORY: /usr/local/bin/htb
LABEL: No Label
FORMAT: UNIX
AVAILABLE BYTES: 118792192
 FILE NUM REC MODIFIED
FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER
GROUP
============== ===== ====== ===== ========= ===== ========== =====
=====
htb 819200 1 13-Jun-92 17:21 R-XR-XR-X 0

1
README.1ST 21540 1 24-Jun-92 8:08 R--R--R-- 0
0
demo PROG 73160 1 2-Jun-92 13:34 RW-R--R-- 0
0

The following information is given in the header. The number specifies the line
number on which the information is given:

1. Full Path specifier.
2. Volume label of the device. Currently, this will always be "No Label".
3. File system type, i.e. UNIX.
4. Amount of free space on the device in bytes (NOT blocks).
5. Column headings for file information.
6. Column headings for file information.

Note that HP BASIC gives the free space in blocks, while HTBasic gives it in
bytes. The file information occurs in the following columns:

Column Information 
1-14 filename or directory name
16-20 file type, BDAT, DIR, PROG, etc.
22-27 number of records in the file
29-33 record length of each record
35-43 modification date in the form DD-MMM-YY
45-49 modification time in the form HH:MM

File Access Permissions
52 "R" means File's owner permitted to Read
53 "W" means File's owner permitted to Write
54 "X" means File's owner permitted to Execute
55 "R" means File's group permitted to Read
56 "W" means File's group permitted to Write
57 "X" or "s" means File's group permitted to Execute

"S" or "s" means Set Group ID permission is given
and file locking is enforced.

58 "R" means all others permitted to Read
59 "W" means all others permitted to Write
60 "X" or "s" means all others permitted to Execute

"S" or "s" means Set User ID permission is given
62-66 User ID of file's owner
68-72 Group ID of file's group

For various special files in UNIX, the file type is listed as given in the following
table:

UNIX Special File File type given in CAT
Directory DIR
Character Device CDEV
Block Device BDEV
Symbolic Link SLINK
Socket NET
Named Pipe or FIFO PIPE

Otherwise, the file type is determined in the following manner. If the file is a
regular UNIX file, a check is made for an HTBasic file type header. If the file is
locked or the header can't be read, then "LOCKD" is given as the file type. If a

header is present, then the file type (BDAT, ASCII, PROG or BIN) found in the
header is given. All other files are ordinary files and are listed with no file type.

See the notes earlier about file names and number of records.

The file permissions are read-permitted ("R"), write-permitted ("W"), and
execute-permitted ("X"). Although, for a directory, the meaning of "X" is
search-permitted. "R", "W" or "X" is listed if the permission is given; "-" is
listed if it is not. Permissions are assigned separately to the file's owner, users
within the file's group and all others. The user named "root" is called the
super-user and may access any file, regardless of the permissions.

If the Set User ID permission is given for an executable file, when that file
executes, it runs as if the owner of the file is logged in instead of you. If the
Set Group ID permission is given for an executable file, it runs as if you are a
member of the group assigned to the file, rather than any groups of which you
are actually a member. Consequently, the program has the same file access
permissions as the owner of the program would have, no matter who executes
that program. The Set User/Group ID permissions have serious security
implications. Please consult your UNIX system manuals to gain an
understanding of the issues involved. (Sun users should consult Section 7.4,
"Setting Security Measures for Executing Programs," in the Sun System and
Network Administration manual.)

If a file starts with a period, ".", by UNIX convention, it is not listed unless the
wildcard pattern starts with a period.

SRM Format
When CAT is directed to a string array, it produces the SRM catalog format.
The elements of the array must be declared to contain at least 80 characters.
If the array has more elements than necessary, the extra elements are set to
zero length. If the array doesn't have enough elements, information about the
additional files is thrown away and no error is reported.

The SRM listing format is compatible with HP BASIC, for compatibility with
existing programs. This is an example of output in SRM format:

DIRECTORY: C:\HTB
LABEL: DEMO
FORMAT: DOS
AVAILABLE BYTES: 33939456
 SYS FILE NUMBER RECORD MODIFIED PUB
OPEN
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC
STAT
===================== === ==== ===== ======== ======== ================ ===
====
HTB.KEY 1 HTB BDAT 2 256 10-Oct-89 14:00 MRW
HP_DATA 1 S300 BDAT 384 256 21-Nov-91 0:00 MRW
HTB.PIF 1 DOS 545 1 24-Jul-92 11:12 MRW

The following information is given in the header. The number specifies the line
number on which the information is given:

1. Path specifier.
2. Volume label of the device.
3. Name of the file system, not the catalog format, i.e. DOS, UNIX, etc.

4. Amount of free space on the device in bytes (NOT blocks).
5. Column headings for file information.
6. Column headings for file information.

Note that the path specifier is preceded by the word "DIRECTORY:". This is
different from HP BASIC. Also, line three gives the name of the file system, not
the name of the listing format. In line four, HP BASIC gives the free space in
blocks, while HTBasic gives it in bytes. The file information occurs in the
following columns:

Col Information 
1-21 filename or directory name
23-25 level: always 1
27-30 system type: HTB, S300, S500 or blank
32-36 file type, BDAT, DIR, PROG, etc.
38-45 number of records in the file
47-54 record length of each record
56-64 modification date in the form DD-MMM-YY
67-71 modification time in the form HH:MM

File Access Permissions
73 manager access - If an M is present then

anyone can read, write, PURGE
74 read access - An R allows read
75 Write access - A W allows write
77-80 open status, OPEN, LOCK, CORR or blank

See the notes earlier about file names and number of records. The Level is
always listed as 1. The system type specifies the kind of file header for typed
files. If the file header is an HTB header, the system type is "HTB". If the file
header is an HP LIF header, the system type is "S300" (or "S500" in the special
case of Series 500 BDAT files). If the file is an ordinary file, the system type
column is blank, since the file has no header. File access permissions are
mapped into SRM permissions in a logical manner from the actual operating
system permissions. In general, the Open Status is undefined.

Selecting a sub-set of files to be displayed
There are three ways to select a subset of files in a directory to be displayed.
The first method is to use the SKIP option: specify that the first N files are not
sent to the destination. The second method is to use the SELECT option:
specify in the SELECT string the beginning characters of the files you wish
listed, all files that don't begin with the selected characters are not displayed.

The last method of selecting files is to use wildcards. The media specifier,
source, is expanded to include a file name template including wildcards. See
WILDCARDS for an explanation of how to use wildcard characters.

Under DOS, Windows, wildcarding is always enabled for the CAT statement.
WILDCARDS OFF has no effect. Under UNIX, wildcarding can be turned on and
off with the WILDCARDS statement.

The following examples illustrate the last two methods of selecting files.
Shown side-by-side are examples which select the same sub-set of files to be
displayed. The example on the left uses the wildcard style of selection, while
the example on the right uses the SELECT option.

Wildcard style SELECT style 
CAT "H*" CAT ;SELECT "H"
CAT "TEXT.*" CAT ;SELECT "TEXT."
CAT "A:R*" CAT "A:";SELECT "R"
CAT "\DOS\BASICA.C*" CAT "\DOS";SELECT "BASICA.C"

Do not use both these methods at once. If you wish to specify a wildcard, use
the wildcard style.

The following are examples of commands which can only be done using the
wildcard style.
CAT "*.BAS"! List only files with the .BAS extension
CAT "A?C" ! List files with 1st letter "A", any second
 ! letter and 3rd letter "C".

COUNTing the number of lines displayed
If the COUNT option is included, the variable is assigned the number of lines
that was sent to the destination. This can be especially useful when sending
the output to a string array for later processing. The count includes the
header, files that are SKIPped, files actually sent to the destination, files not
sent to a string array because the array was too small and the "AVAILABLE
ENTRIES" line of a catalog of a PROG file.

Suppressing the header
If the NO HEADER option is included, then just the files are sent to the
destination and COUNT accounts for no header lines. For catalogs of a PROG
file, the "AVAILABLE ENTRIES" line is also suppressed.

Listing filenames only
If the NAMES option is included, then only filenames are listed. Both the
header and other file information is suppressed. If output is directed to a
device, names are output in five columns. If output is directed to a string
array, output is one name per element. The CAT statement executes
considerable faster with this option.

See Also:
COPY, CREATE, CREATE ASCII, CREATE BDAT, MASS STORAGE IS, PERMIT,
PROTECT, PURGE, RENAME, SYSTEM$("MSI")

CAUSE ERROR
Simulates a specified error.
Syntax: CAUSE ERROR error-number

Sample: CAUSE ERROR Err
IF Testing THEN CAUSE ERROR 80

Description:
When the statement is executed, it is as though the error specified actually
occurred and the normal error related functions are affected: ERRL, ERRLN,
ERRM$ and ERRN. CAUSE ERROR is useful in debugging error handlers.

See Also:
CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN, ERROR SUBEXIT,
OFF ERROR, ON ERROR

CHANGE
Finds and replaces strings.
Syntax: CHANGE old TO new [IN first-line [,last-line]] [;ALL]

where: old and new = string-literals
first-line and last-line = line-number | line-label

Sample: CHANGE "Apples" TO "Oranges" IN 1200,1500
CHANGE "Delete this sentence." TO ""
CHANGE "1988" TO "1989";ALL
CHANGE "unquoted" TO """quoted"""

Description:
The CHANGE statement is an editor command that allows you to search and
replace character sequences. The old and new string literals are used exactly
as given with the case being significant.

If ALL is included in the CHANGE statement, then all changes are made
automatically. If ALL is not specified, the computer searches for each
occurrence, replaces the item, displays the line with the change and then asks
you if you want this replacement. If you do, press ENTER; if you don't, press
CONTINUE. If you wish to abort the CHANGE statement, press any other
function key. When no further occurrences of the search string can be found a
message "new not found" is displayed.

CHANGE is not allowed while a program is running, but it may be used when
the program is paused. An error message will be displayed if a syntax error
occurred during any CHANGE operation. When the line is corrected the
CHANGE command continues. The CHANGE operation is aborted if a change
exceeds the maximum allowable length of a program line or if a line number is
altered.

If first-line doesn't exist, the line immediately after that line number is used. If
a non-existent line label is specified, an error will be reported. If last-line is
specified, searching will end with that line. If the line doesn't exist, the line
immediately before that line number is used. If a non-existent line label is
specified, an error will be reported. If last-line is not specified, searching will
end with the last line in the program. This command can only be executed
from the keyboard. It cannot be included in a program.

See Also:
COPYLINES, DEL, DELSUB, EDIT, FIND, INDENT, MOVELINES, REN, SECURE,
XREF

CHECKREAD
Enables/disables verification of data sent to disk.
Syntax: CHECKREAD ON

CHECKREAD OFF

Sample: If Vital THEN CHECKREAD ON
CHECKREAD OFF

Description:
This command enables or disables verification of data sent to the mass
storage media. If the data that is written fails to verify correctly, an error is
reported. CHECKREAD ON enables and CHECKREAD OFF disables
verification. The method of verification depends on the operating system and
hardware of your computer. If the operating system does not support
verification, this statement is ignored.

Under DOS, CHECKREAD is equivalent to the VERIFY command (see your
DOS manual). The state of VERIFY is not changed by start-up or by QUIT.
Under Windows and UNIX, CHECKREAD is ignored.

CHGRP
Sets the Group Ownership of a file.
Syntax: CHGRP group, file-specifier

where: group = numeric-expression rounded to an INTEGER

Sample: CHGRP 32,"/usr/users/Kristi/file1"
CHGRP 0,"/etc/passwd"

Description:
On operating systems which support both group and individual ownership of a
file, CHGRP changes the group associated with a file. If the operating system
does not support this call or if you do not have the proper privilege to change
the group, an error is returned when the statement is executed. However,
under any version of HTBasic, the editor will allow this statement to be
entered and the syntax checker will check it for correctness.

The FAT file system used by DOS and Windows does not support file
ownership. Executing this statement will cause an error.

Under SunOS 4.x, in order to change the group you must belong to the
specified group and be the owner of the file or be the super-user.

Under HP-UX, to change the owner or group, you must own the file or have
appropriate privileges. If you are not the super-user, the set-user-ID and set-
group-ID bits of the file mode are cleared. The HP-UX getprivgrp and Access
Control Lists (ACLs) capabilities can affect execution of this statement as well.
See the proper manuals for information. When using CHOWN or CHGRP on
symbolic links, the owner or group of the symbolic link is changed.

See Also:
CHOWN, CREATE, PERMIT, TIMEZONE IS

CHOWN
Sets the Individual Ownership of a file.
Syntax: CHOWN id, file-specifier

where: id = numeric-expression rounded to an INTEGER

Sample: CHOWN 512,"/usr/users/Julie/file2"
CHOWN 0,"/dev/tty1"

Description:
On operating systems which support individual ownership of a file, CHOWN
changes the ownership of a file. If the operating system does not support this
call or if you do not have the proper privilege to change the ownership, an
error is returned when the statement is executed. However, under any version
of HTBasic, the editor will allow this statement to be entered and the syntax
checker will check it for correctness.

The FAT file system used by DOS and Windows does not support file
ownership. Executing this statement will cause an error.

Under SunOS 4.x, you must be the super-user in order to change the owner.

Under HP-UX, to change the owner or group, you must own the file or have
appropriate privileges. If you are not the super-user, the set-user-ID and set-
group-ID bits of the file mode are cleared. The HP-UX getprivgrp and Access
Control Lists (ACLs) capabilities can affect execution of this statement as well.
See the proper manuals for information. When using CHOWN or CHGRP on
symbolic links, the owner or group of the symbolic link is changed.

See Also:
CHGRP, CREATE, PERMIT, TIMEZONE IS

CHR$
 Creates ASCII character from decimal value.
Syntax: CHR$(numeric-expression)

Sample: Lf$=CHR$(10)
Lowr$=CHR$(NUM(Uppr$)+32)
A$=CHR$(65)

Description:
The argument of the CHR$ function is a numeric expression which is rounded
to an integer. A value within the range 0 to 255 is then extracted from the
integer by using the low-order byte of the 16-bit word. The ASCII character
which corresponds to this value is assigned to the specified string variable.
Only one character is assigned to the target string. An ASCII table is included
in Appendix B.

See Also:
NUM

CHRX
Returns the width of a character cell.
Syntax: CHRX

Sample: X1=CHRX
ALLOCATE INTEGER Charcell(1:CHRY,1:CHRX)

Description:
If your computer display supports multiple display modes or fonts having
different character widths, the value returned by CHRX is the width for the
current display mode.

See Also:
CHRX, CHRY, SET CHR

CHRY
Returns the height of a character cell.
Syntax: CHRY

Sample: CHRY
ALLOCATE INTEGER Charcell(1:CHRY,1:CHRX)

Description:
If your computer display supports multiple display modes or fonts having
different character heights, the value returned by CHRY is the height for the
current display mode.

See Also:
CHRX, CHRY, SET CHR

CINT
Converts a value to INTEGER.
Syntax: CINT (numeric-expression)

Sample: OUTPUT @I;CINT(X*1.1)

Description:
The CINT function is useful for forcing the type of a variable or value to
INTEGER. For example, suppose you are writing binary integers to a file and
one value must be multiplied by 1.1 before being written. X*1.1 gives a REAL
result, which outputs eight bytes to the file. Even INT(X*1.1) gives a REAL.
CINT(X*1.1) forces the value to be INTEGER and two bytes are written to the
file.

Notice the differences among CINT, FIX and INT. CINT converts a REAL value
to an INTEGER value by substituting the closest INTEGER to the value. FIX
returns the closest integral value between the REAL value and zero. INT
returns the closest integral value between the REAL value and negative
infinity. Also, CINTactually changes the type from REAL to INTEGER while INT
and FIX return integral results without changing the type. The following table
helps illustrate these differences:

Value x CINT(x) FIX(x) INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
-2.2 -2 -2.0 -3.0
-2.6 -3 -2.0 -3.0

Porting to HP BASIC
CINT is a new HTBasic function that is not available in HP BASIC. It should not
be used in programs that must be ported back to HP BASIC.

See Also:
DROUND, FIX, FRACT, INT, PROUND, REAL

CLEAR
Sends an IEEE-488 bus Device Clear.
Syntax: CLEAR { device-selector | @io-path }

Sample: CLEAR 701
CLEAR Adevice
CLEAR @Path

Description:
CLEAR causes the active controller to send a Device Clear to one or more
devices. The effect on the device is device-dependent. If the computer is not
the active controller, an error is generated. If primary addressing is specified
the bus action is: ATN, MTA, UNL, LAG, SDC. If only an interface select code is
specified the bus action is: ATN, DCL.

See Also:
ABORT , LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL,
TRIGGER

CLEAR ERROR
Resets all error indicators.
Syntax: CLEAR ERROR

Sample: CLEAR ERROR
IF Finis THEN CLEAR ERROR

Description:
CLEAR ERROR resets ERRL, ERRLN, ERRM$ and ERRN to their default start-up
values.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN,
ERROR SUBEXIT, OFF ERROR, ON ERROR

CLEAR LINE
Clears the keyboard input line.
Syntax:

CLEAR LINE

Sample: IF Signal THEN CLEAR LINE

Description:
This command is equivalent to pressing the CLR LN key and replaces the non-
intuitive command: OUTPUT KBD;CHR$(255)&"#";.

See Also:
CLEAR SCREEN

CLEAR SCREEN
Clears the ALPHA display.
Syntax: CLEAR SCREEN

CLS

Sample: IF Ready THEN CLEAR SCREEN

Description:
CLS is an abbreviated form of CLEAR SCREEN. This command is equivalent to
pressing the CLR SCR key and replaces the non-intuitive command: OUTPUT
KBD;CHR$(255)&"K";.

On bit mapped displays with MERGE ALPHA WITH GRAPHICS in effect, this
command will also clear the graphic screen.

See Also:
CLEAR LINE

CLIP
Changes the clipping rectangle.
Syntax: CLIP left,right,bottom,top

CLIP ON
CLIP OFF

Sample: CLIP 10,20,5,25

Description:
CLIP changes the clipping rectangle. Lines, areas and labels are clipped so
that portions outside the clipping rectangle are not displayed. The PLOTTER IS
statement sets the clipping rectangle to the hard-clip limits (which are the
user specified values or the maximum allowed by the device or page size).
The VIEWPORT statement sets the clipping rectangle to the edge of the
VIEWPORT.

When values are specified with the CLIP statement, the clipping rectangle is
set to the values specified. The units used are WINDOW (or SHOW) units, not
VIEWPORT units.

The CLIP OFF statement sets the clipping rectangle back to the hard-clip
limits. The CLIP ON statement restores the clipping rectangle to the last
clipping rectangle set up by CLIP or VIEWPORT. If no CLIP or VIEWPORT has
been executed, CLIP ON sets the clipping rectangle to the hard-clip limits.

Execute CLIP to add labels, comments, graphics or any other plotting that is
to be done outside the VIEWPORT (assuming the VIEWPORT is less than the
hard-clip limits).

See Also:
CLEAR SCREEN, DRAW, MOVE, PLOT, POLYGON, POLYLINE, SHOW, VIEWPORT,
WINDOW

CLS
See CLEAR SCREEN.

CLEAR SCREEN

CMPLX
Combines real and imaginary parts to return a complex number.
Syntax: CMPLX(numeric-expression, numeric-expression)

Sample: PRINT Z*CMPLX(0,1)
Z=CMPLX(X,Y)

Description:
This function allows a complex number to be assembled from two numeric
expressions. The first expression specifies the real part and the second
specifies the imaginary part. This function also allows complex constants, such
as CMPLX(PI,6.7), to be expressed in a program.

To assemble a complex number from magnitude and angle rather than real
and imaginary parts, use this method:
Z = CMPLX(Magnitude*COS(Angle), Magnitude*SIN(Angle))

If a complex number is used as an argument to CMPLX, then only the real
part of the argument is used. For example, CMPLX(CMPLX(1,2), CMPLX(3,4)
) is equal to CMPLX(1,3).

See Also:
ABS, ARG, CONJG, IMAG, REAL

COLOR
Defines and selects the color for graphics.
Syntax: AREA COLOR h, s, l

AREA INTENSITY r, g, b
AREA PEN pen-number
PEN pen-number
SET PEN pen-number COLOR h, s, l
SET PEN pen-number COLOR numeric-array(*)
SET PEN pen-number INTENSITY r, g, b
SET PEN pen-number INTENSITY numeric-array(*)

where: h,s,l, r,g,b = each is a numeric-expression in the range zero to one.
pen-number = see below.

Sample: SET PEN 1 COLOR H,S,L
AREA INTENSITY R,G,B
AREA PEN 2
SET PEN Num COLOR H,S,L
PEN 1

Description:
Specifying a Color using the HSL system

Use the keyword COLOR to specify a color in the HSL (Hue, Saturation,
Lightness) color space. The HSL color space is designed to be intuitive and
follows the model of mixing paints. An artist preparing a color for a painting,
first selects a hue (pure color pigment). He may then add black or white paint
to arrive at the desired color. Adding white serves to wash out the color. In
scientific terms, we say this affects the "saturation" of the color. The artist
may then adjust the brightness by adding black paint. This affects the amount
of light reflected by the pigment. We call this the luminosity.

Saturation ranges from zero (white) to one (pure color - no added white).
Luminosity ranges from zero (black) to one (pure color - no added black). Hue
ranges from zero to one. The following table gives an indication of where
several colors occur in that range:

Hue Value
Red .000
Yellow .167
Green .333
Cyan .500
Blue .667
Magenta .833
Red 1.00

Specifying a Color using the RGB system
Use the keyword INTENSITY to specify a color using the RGB (Red, Green,
Blue) color space. The RGB color space is designed to match the way in which
our eyes work and in turn, the way in which television and computer displays
are designed. The display has three color guns: Red, Green and Blue. By
specifying a number in the range zero (corresponding to zero intensity) to one
(corresponding to maximum intensity) for each of the three guns, you can
uniquely define all the colors which can be produced by that display.

Pen Numbers
A computer display system is limited in the number of different colors it can
display at the same time. If N is the number of different colors which can be
displayed simultaneously, then legal pen numbers are the integers 0 to N-1.

Some display systems can operate in more than one graphics mode and the
number of available colors depends on the current graphics mode. For
example, the IBM PC color graphics adaptor (CGA), when in ALPHA mode, can
display sixteen colors, but when in 640x200 GRAPHICS mode, can only display
two colors.

Drawing Mode Table
The writing mode of the pen is specified by the current drawing mode and the
sign of the pen number. GESCAPE CRT,4 is used to change to normal drawing
mode. GESCAPE CRT,5 is used to change to alternate drawing mode. The
following table defines the different writing modes available. P is a positive
pen number, X is the present value of a pixel.

GESCAPE CRT,4 GESCAPE CRT,5
Statement Normal Alternate                               
PEN P P BINIOR(X,P)
AREA PEN P P BINIOR(X,P)
PEN 0 BINCMP(X)* 0
AREA PEN 0 0 0
PEN -P BINAND(X,BINCMP(P)) BINEOR(X,P)
AREA PEN -P BINAND(X,BINCMP(P)) BINAND(X,BINCMP(P))

*PEN 0 in Normal Drawing Mode will do BINCMP(X) in non-color map mode and
0 in COLOR MAP mode.

Pen Numbers in Non-Color Map Mode
If the display does not have a color map or if COLOR MAP is not specified in
the PLOTTER IS statement, then the display operates in Non-Color Map mode.
The color of each pen is fixed. The pen number is translated to an RGB
number as shown in the table below and stored in the display buffer. For
example, the color cyan is translated to the RGB number 011. For Non-Color
Map mode, the value of P in the writing mode table above is the RGB number,
not the pen number.

The following table gives the pen number to RGB number assignments for the
first eight pens. For monochrome displays, only the first two entries apply.

PEN COLOR RED GREEN BLUE
0 black 0 0 0
1 white 1 1 1
2 red 1 0 0
3 yellow 1 1 0
4 green 0 1 0
5 cyan 0 1 1
6 blue 0 0 1
7 magenta 1 0 1

Pen Numbers in Color Map Mode
COLOR MAP must be specified in the PLOTTER IS statement, to enable Color
Map mode. A display with a color map allows any color to be assigned to any
pen. The SET PEN statement explains pen color assignments. The following

table gives the default color to pen assignments.

PEN COLOR PEN COLOR
0 black 8 black
1 white 9 olive green
2 red 10 aqua
3 yellow 11 royal blue
4 green 12 maroon
5 cyan 13 brick red
6 blue 14 orange
7 magenta 15 brown

See Also:
AREA, GESCAPE, PLOTTER IS, PEN, SET PEN

COM
Defines global variables.
Syntax: COM [/ com-block-name /] item [,item...]

where: item = [type] numeric-name [{(bounds)|(*)} [BUFFER]] |
string-name$ ['['length']'] [BUFFER] |
string-name$ { (bounds) ['['length']'] | (*) } |
@io-path
type = {REAL | INTEGER | COMPLEX}
bounds = [lower-bound :] upper-bound [,bounds...]
bound and length = integer constants

Sample: COM P1,Fft$[1024] BUFFER
COM INTEGER I(5),REAL Array(-365:364)
COM /Block/ Name$,@Source,INTEGER Cross(*)

Description:
COM allocates a block of memory where variables can be held in "common"
between one or more program contexts. Any subprogram or main context can
access a "common" variable by including a COM statement which references
the correct block of memory. One unnamed COM block is provided. To
reference it, leave off the block name. The unnamed COM block must be
declared in the main context. All other COM blocks are referenced by name.
The name is global to all contexts.

Declaring a COM block
A COM block may contain so many variables that it takes several lines to
declare them all. As long as all the COM statements are in the same context
and all reference the same block name (or all have no block name), it is
completely legal to divide the COMblock declaration onto several lines. The
following is an example:
COM /Block1/ Var1,Var2
COM /Block1/ Var3,Var4

Furthermore, the statements don't have to be next to each other. In fact,
statements declaring two or more COM blocks can be intermixed. The COM
statements must preceed any OPTION BASE statement that is present.

Parameters are not allowed in COMstatements. Numeric variables are
considered REAL until an INTEGER declaration is seen. Variables are then
considered INTEGER until a REAL, I/O path or string is declared. String
variables must have their length declared when declared in a COM block.
Buffer variables are declared by specifying BUFFER after each variable's
name. BUFFERvariables are used with the TRANSFER statement.

The maximum number of array dimensions is six and the lower bound must be
less than or equal to the upper bound value. In the first context that an array
or string is declared, the COM statement must explicitly specify array
subscript bounds and string lengths. In subsequent contexts, COM statements
need only specify the string name or the array name with a full array specifier
"(*)".

Matching COM blocks
The COM blocks in each context must match. In a given COM block, the

individual variable names do not have to match, but the number of variables
and their type must agree. The boundaries of arrays do not have to be the
same, but the RANK (number of dimensions) and the SIZE must match.

Creation and Deletion of COM blocks
COM variables have a different lifetime than normal variables. When a COM
block is created, the variables are all initialized to zero (or zero length strings).
The variables then exist and retain values assigned to them until the COM
block is deleted.

A COM block is initially created when a program context is "prerun" and the
context declares a COM block that does not already exist. A prerun will be
done when you:

Press RUN or STEP when no program is running
Execute the RUN command when no program is running
Execute GET or LOAD from a program
Execute GET or LOAD command that begins program execution

During prerun, if a COM block is declared which already exists, the new and
old declarations are compared for compatibility. If they are found to be
compatible, then the COM block is left untouched and the variables retain
their previous values. If they are found to be incompatible then an error is
returned. If a REDIM can make arrays compatible, then the arrays will be
REDIMed. A COM block exists until a SCRATCH A or SCRATCH C deletes it.
Even if you delete the program which refers to a COM block, it remains in
memory until a SCRATCH A or C is executed.

When you LOAD a new program, all COM blocks in memory will be checked
against the COM blocks defined in the new program and any unreferenced
COM blocks will be deleted.

See Also:
ALLOCATE, DIM, INTEGER, OPTION BASE, REAL, REDIM, TRANSFER

COMMAND$
Returns a copy of the command line.
Syntax: COMMAND$

Sample: PRINT "Switches: "&COMMAND$
C$[4;10]=LWC$(COMMAND$)

Description:
The COMMAND$ function returns the command line used to start HTBasic,
including any command line options specified. The DOS version strips the
command name used to start HTBasic, (like HTB or HTBC) from the command
line and removes any leading spaces. For example, if you start HTBasic with
the statement:
HTB -O -Z 2

then COMMAND$ will return "-O -Z 2". One possible application of this
function is to implement an AUTOST that examines the command line and
runs any program specified:
10 IF LEN(COMMAND$) THEN LOAD COMMAND$,1
20 END

If HTBasic is then started with the following line, the AUTOST file will load and
run the program "MYPROG":
HTB MYPROG

UNIX versions of HTBasic return the entire command line. This is useful if
symbolic links are made to the HTBasic executable and the AUTOST program
wishes to react differently depending on the name used to start HTBasic.

Porting to HP BASIC
COMMAND$ is a new HTBasic function that is not available in HP BASIC. It
should not be used in programs that must be ported back to HP BASIC.

See Also:
ENVIRON$, EXECUTE, SYSTEM$

COMPLEX
Reserves storage for complex variables and arrays.
Syntax: COMPLEX variable [,variable...]

where: variable = numeric-name [(bounds) [BUFFER]]
bounds = [lower-bound :] upper-bound [,bounds]
lower/upper-bound = integer constant in the range -32767 to 32767.

Sample: COMPLEX Z, C(-10:10,4)
COMPLEX Tx(512) BUFFER

Description:
COMPLEX declares, dimensions and reserves memory for complex variables
and arrays. COMPLEX variables use sixteen bytes of storage space. An
array's maximum dimension is six and each dimension can hold a maximum
of 32,767 elements. If a lower bound is not specified, the default is the
OPTION BASE value (0 or 1). A COMPLEX variable may be declared a buffer
by specifying BUFFER after the variable name. Buffer variables are used with
the TRANSFER statement.

See Also:
ALLOCATE, COM, DEF FN, DIM, INTEGER, REAL, SUB, TRANSFER

CONFIGURE BDAT
Specifies the byte order for CREATE BDAT.
Syntax: CONFIGURE BDAT {MSB | LSB} FIRST

Sample: CONFIGURE BDAT MSB FIRST
CONFIGURE BDAT LSB FIRST

Description:
CONFIGURE BDAT specifies the byte ordering to use with each BDAT file
created after this statement is executed. By default, BDAT    files are created
with the same byte order as the computer. The IBM PC and compatibles use
LSB FIRST. The Sun SPARCstation and HP Series 700 use MSB FIRST. Since
HP BASIC can only use MSB FIRST files, if you wish to CREATE BDAT files on a
PC which can be used by an HP BASIC workstation, you must use CONFIGURE
BDAT MSB FIRST before creating the files. HPCOPY will print a warning when
it copies any BDAT file with LSB FIRST byte ordering.

BDAT files created with HP file headers are always created MSB FIRST,
regardless of the setting of this statement. See CONFIGURE CREATE.

See Also:
CONFIGURE CREATE, CONFIGURE SAVE, CREATE BDAT

CONFIGURE CREATE
Specifies the kind of file header used with typed files.
Syntax: CONFIGURE CREATE {"HP" | "HTB"}

Sample: CONFIGURE CREATE "HP"
CONFIGURE CREATE "HTB"

Description:
CONFIGURE CREATEspecifies the kind of file header to use when creating a
LIF ASCII or BDAT file. By default, HTBasic creates "HTB" file headers, since
they are two or three times smaller than HP LIF headers. BDAT files with HTB
headers can also be created with data in either LSB or MSB byte ordering (see
CONFIGURE BDAT). File operations are much faster when the byte ordering of
the file matches the byte ordering of the computer. Files with HTB file headers,
when copied with HPCOPY, are completely compatible with HP BASIC.

Use CONFIGURE CREATE "HP" if you wish to create data files that are
simultaneously accessed over a network by HTBasic and HP BASIC. Files with
HP LIF headers can also be "binary" copied among DOS or UNIX media for
access by the HP Language Coprocessor (Viper card), HP BASIC and HP
BASIC/UX.

HTBasic can always use files with either header, regardless of the setting of
CONFIGURE CREATE. The setting affects file creation only. A CAT listing in
SRM format shows the kind of file header of each file in the System Type
column.

See Also:
CONFIGURE BDAT, CONFIGURE SAVE, CREATE BDAT

CONFIGURE DIM
Turns implicit variable dimensioning on or off.
Syntax: CONFIGURE DIM { ON | OFF }

Sample: CONFIGURE DIM ON
CONFIGURE DIM OFF

Description:
CONFIGURE DIM turns implicit variable and string dimensioning on or off. By
default it is on and if a variable is never declared, it is assumed to be REAL. If
a string is never declared, it is assumed to have a maximum length of 18. If an
array is never declared, it is implicitly declared having the number of
subscripts found in its first occurrence, with each dimension having the
default OPTION BASE lower bound and an upper bound of ten.

When CONFIGURE DIM is OFF, then each variable, string and array must be
explicitly declared using REAL, INTEGER, COMPLEX or DIM statements.

During prerun, any undeclared variables generate an error message that is
written to the message line. To see all these error messages turn PRINTALL IS
on during prerun. If a program has already been prerun, CONFIGURE DIM OFF
will not report any undeclared variables until another prerun occurs. To force a
prerun to occur, change a program line and press the STEP key.

While most structured programming languages force explicit variable
declaration, traditional BASIC has always allowed implicit declarations. For
example, in the program:
20 Xyz=1
30 PRINT Xy
40 END

the variables Xyz and Xy are used without declaration. Many advocates of
structured programming, however, feel that explicit variable declaration is
preferable. Suppose that "Xy" in line 30 is a typographical error that should
have been "Xyz." This type of program error is extremely difficult to find and
correct in a large program. With CONFIGURE DIM OFF, the above program
would require an additional line:
10 REAL Xyz

and the "Xy" in line 30 would be flagged as an error when you attempted to
run the program.

See Also:
COMPLEX, DIM, INTEGER, OPTION BASE, REAL

CONFIGURE DUMP
Specifies the graphic printer language for DUMP.
Syntax: CONFIGURE DUMP TO language

where: language = string expression naming the printer language
and driver options

Sample: CONFIGURE DUMP TO "HP-PCL"

Description:
CONFIGURE DUMP specifies what graphic printer language the DUMP
statement uses. The language string expression specifies the name of a driver.
When CONFIGURE DUMP is specified, dumps are directed to that driver. It is
recommended that CONFIGURE DUMP statements be included in your
AUTOST file to load any necessary drivers.

The following information is for reference only. See the Installing and Using
manual for more specific information for your version of HTBasic. The
following table lists the drivers available at the time of this manual printing.
(Not all drivers are available in all versions.)

Name For these printers 
EPSON 8-pin Epson, IBM Graphics Printer
EPSON24 24-pin Epson printers
HP-PCL HP-PCL printers like the LaserJet
PCL Advanced HP-PCL driver
HP-PCLC Color PCL printers like the PaintJet
DSK-JETC Color PCL printers like the DeskJet
CANON Canon CLIPSL Laser Printers
PS-DUMP Postscript printers, devices and files
PCX PCX graphic files
GIF Graphic Interchange Format files
WIN-DUMP Send the dump to the default Windows printer

As an example, if you wish to use an HP LaserJet II for screen dumps, use the
following command to change to the HP printer control language:
CONFIGURE DUMP TO "HP-PCL"

If a DUMP is made before doing a CONFIGURE DUMP, HTBasic automatically
loads and uses a driver. Under DOS, the EPSON driver is used. Under Windows
the WIN-DUMP driver is used. Under UNIX, the PS-DUMP driver is used.

Number of Colors
The number of colors in the DUMP depends on both the dump driver and the
display driver. All dump drivers support black and white dumps. Some dump
drivers can also handle 16 or 256 colors. The same is true of display drivers. If
both the display and dump drivers support 256 colors, the dump is made in
256 colors. Otherwise if both support 16 colors, the dump is made in 16
colors. Otherwise, the dump is made in black and white.

Options
It is sometimes necessary to specify options to the drivers. Options are
included by appending a semicolon to the driver name, followed by the
options. The following specific driver sections contain more details on these

options.

EPSON Driver
The EPSON dump driver provides support for any printer that accepts the
Epson eight pin graphics format. The command to load the EPSON dump
driver is:
CONFIGURE DUMP TO "EPSON"

The output will appear distorted in respect to what's on the screen. The size
also will be different in portrait and landscape modes. This is because Epson
printers don't have square pixels. The driver can not compensate for this
distortion. However, the VIEWPORT and WINDOW statements may help correct
for some of the distortion. The driver sets the Epson printer to 120 dots per
inch (DPI); this setting cannot be changed. The EPSON driver does not have
any options.

EPSON24 Driver
The EPSON dump driver provides support for any printer that accepts the
Epson 24 pin graphics format. The command to load the EPSON24 dump
driver is:
CONFIGURE DUMP TO "EPSON24"

The output will appear distorted in respect to what's on the screen. The size
also will be different in portrait and landscape modes. This is because Epson
printers don't have square pixels. The driver can not compensate for this
distortion. However, the VIEWPORT and WINDOW statements may help correct
for some of the distortion. The driver sets the Epson printer to 120 DPI; this
setting cannot be changed. The EPSON24 driver does not have any options.

HP-PCL Driver
The HP-PCL dump driver provides support for any printer that accepts the
Hewlett Packard Printer Command Language (PCL) or HP Raster Interface
Standard graphic commands. The command to load the HP-PCL dump driver
is:

CONFIGURE DUMP TO "HP-PCL[;options]"

If the output is too big to fit on the page in either portrait or landscape mode,
you can override the printer's default dots per inch (DPI) setting using the DPI
option.

DPInnn Option
The DPInnn option tells the driver to use nnn dots per inch when dumping
graphics. Without this option, the printer's default resolution is used. The
resolution specified must be supported by the printer. For most newer devices,
DPI75, DPI100, DPI150, and DPI300 are the supported values. Some older
printers, like the Hewlett-Packard ThinkJet, don't support this option. The
following example sets the printer resolution to the maximum 300 DPI allowed
by a LaserJet:
CONFIGURE DUMP TO "HP-PCL;DPI300"

PCL Driver
The PCL dump driver provides support for devices and software that accept

the Hewlett-Packard PCL printer language. The driver supports both DUMP
ALPHA and DUMP GRAPHICS from bitmapped displays. The DOS version
supports DUMP ALPHA on PC text screens as well; in this case, the screen is
sent to the printer as text, and all the options explained below are ignored. In
the UNIX versions of HTBasic, the DUMP ALPHA command dumps the alpha
planes in graphics mode and the DUMP GRAPHICS command dumps the
graphics planes.

The PCL driver is loaded with a line like

CONFIGURE DUMP TO "PCL[;options]"

Options
The options are listed after the semicolon in the driver name, within the
quotes. If more than one option is specified, the option names are separated
by commas. When no options are given, output from the PCL driver is the
same as the HP-PCL driver. The options are as follows:

ADJUST.    Certain display adapters common in the PC environment use pixels
that have different sizes in the horizontal and vertical directions. Check the
Installing and Using the DOS Version manual for more information. The
ADJUST option is ignored in the UNIX X Windows versions of HTBasic. All pixels
are considered to be square and the dump is made using the aspect ratio of
the window running HTBasic.

BW.    This option tells the printer to dump using white for the areas on the
screen that were drawn using PEN 0 and black for the areas drawn with any
other PEN. This option is the default; it need not be specified explicitly.

COLOR, CCMY, C16, and C256.    These options cause the dump to be done
in color to a color printer. The COLOR option uses the printer's default 8-color
solid-color palette (black, white, red, green, blue, cyan, magenta, and yellow),
mapping each color on the screen to the closest one from the palette. COLOR
uses the default RGB palette to dump the screen; CCMY uses the default CMY
palette. The C16 and C256 options use a 16- or 256-color palette on the
printer, and only work with printers that have settable color palettes, such as
the PaintJet series and the DeskJet 1200C. With printers that use dithering to
print mixed colors, you may have to specify a coarser resolution than the
printer is capable of in order to enable the dithering; for example, on the
original PaintJet printer, C16 and DPI90 together are needed to produce
dithering; C16 and DPI180 cause the printer to use only the 8 default colors
when printing.

Printing using the COLOR and CCMY options swaps black and white colors
when printing, unless the INVERT option is also used.

When using the solid-color palette with older PaintJet printers, the COLOR
option should be used, as these printers do not support the CMY color model.
The DeskJet 500C and 550C models can only generate color screen dumps
with the CCMY option.

COMPRESS.    The COMPRESS option specifies that the printer being used can
do "packbits"-style data compression. If this option is specified, the screen
dump is transmitted to the printer using fewer data bytes. The COMPRESS
option can be used with all the LaserJet IIP and IIP+ printers, all LaserJet III and
IV series printers, all DeskJet series printers, the PaintJet XL300 printer (but
not the older PaintJets), and the DesignJet printers, as well as other brands of

printers that emulate these. Note, however, that the printers with slower
CPU's will print 2-4 times slower when printing compressed data, so
COMPRESS may not be a good option to use with these printers.

DPInnn.    This option tells the driver to use nnn dots per inch when dumping
graphics. Without this option, the printer's default resolution is used. This
option is required for the GRAY option, explained below, and for the ADJUST
option (available only with PC versions of the driver). The resolution specified
must be one acceptable by the printer's Raster Graphics Resolution command.
For most newer devices, DPI75, DPI100, DPI150, and DPI300 are the legal
values for this option. Some older printers, like the Hewlett-Packard ThinkJet,
don't support this option.

With the COLOR and BW options, this option controls the size of the dump, by
mapping each pixel on the screen to one of the specified-sized dots on the
printer; with the GRAY option, this options controls the size of the sub-pixels
used to create the printed image, as explained in the GRAY option section. On
the PC, this option also sets the size of the sub-pixels used to print the image
when the ADJUST option is used, as explained in the ADJUST option section.

GRAY.    The GRAY option causes the driver to consult the screen's color map
and calculate a gray shade for each color using the NTSC grayscale equation.
Screen dumps are produced using the resulting shades of gray. If the INVERT
option is not also specified, white and black are reversed after the gray shade
is calculated, so that lighter colors on the screen become darker colors on the
printer.

When dumps are made using this option, the driver calculates the number of
printer pixels, as specified in the DPInnn option, required to print a single
screen pixel to make a 9 x 6 3/4 inch (23 x 17 mm) plot, up to 4 x 4 printer
pixels per screen pixel. The driver sets the appropriate number of printer
pixels to black to represent the gray shade of the corresponding screen pixel.

The NTSC grayscale equation is

brightness = 11% blue + 59% green + 30% red.

The GRAY option is ignored unless the DPInnn option is also specified.

INVERT.    By default, the driver makes images with black and white
exchanged from the values used on the screen. If the GRAY option is used, the
driver by default reverses the gray level of all pixels dumped from that seen
on the display. This is often suitable for output to a printer, where printing is
done with colored inks on white paper, but may not be suitable for film output
devices, where an exact image of the screen is wanted. The INVERT option
causes the colors or gray levels to be dumped exactly as they are on the
screen.

RELATIVE.    Normally, the driver begins each dump at the left margin. The
RELATIVE option causes the driver to begin each dump at the printers current
print position.

EJECT.    Normally, the driver does not eject the page after a dump is finished.
The EJECT option causes the driver to send a Form Feed character to the
printer or file at the end of each dump.

APPEND

If the APPEND keyword is used with the DUMP DEVICE IS command and if the
dump device is a file, the driver appends dumps to the file, separated by form
feeds.

ALPHA Dumps
The DUMP ALPHA command from a PC text screen produces a dump at the top
of a US "A" or European A4 sized sheet of paper. The attributes of text on the
screen, such as the reversed colors on the key labels, are lost in this mode.

Note that DUMP ALPHA from bitmapped screens on the PC dumps the text on
the screen as graphics, and attributes are preserved in the dump.

DUMP ALPHA in the UNIX versions of HTBasic dumps the text on the screen as
graphics, and attributes are preserved in the dump.

If the APPEND keyword is used, subsequent DUMP ALPHA commands produce
similar dumps, each on a separate sheet of paper.

Option Tables
A table in the Installing and Using manual assists in choosing the proper
options, based on the printer type and screen resolution.

HP-PCLC Driver
The HP-PCLC dump driver provides support for any printer that accepts the
color variation of Hewlett Packard Printer Command Language (PCL) used in
the HP Color PaintJet printer. The command to load the HP-PCLC dump driver
is:
CONFIGURE DUMP TO "HP-PCLC"

If the output is too big to fit on the page in either portrait or landscape mode,
you can override the printer's default dots per inch (DPI) setting before
executing the DUMP command. The PaintJet's default is 90 DPI. To change this
setting use the following command (assuming the printer is connected to ISC
10):
OUTPUT 10;CHR$(27)&"*t180R" !Set to 180 DPI

The HP-PCLC driver has two options, BW and COL16. COL16 allows dumps to
be made in 16 colors and is the default. BW causes the dump to be made in
black and white, which can be useful for dumping text. In BW mode, the driver
output is identical to the HP-PCL driver. To change to BW mode, use this
command:
CONFIGURE DUMP TO "DSK-JETC;BW"

Color Palette
GESCAPE codes 100 and 101 set the printer color palettes. If the code is 100,
the color table used for non-COLOR MAP mode is changed. If 101 is specified,
the color table used for COLOR MAP mode is changed. The syntax is

GESCAPE PRT,code,param(*)

The param array must be a two dimensional INTEGER array. It must have at
least one row, and must have three columns. The first row contains color
information for pen 0, second row for pen 1, etc. If the array does not have
enough rows, or has too many rows, no error is reported. The first column

contains the information for red, the second for green, and the third for blue.
The color information ranges in value from 1 to 99.

Param(0,0) - Pen 0 red color palette value
Param(0,1) - Pen 0 green color palette value
Param(0,2) - Pen 0 blue color palette value
.
.
.
Param(15,0) - Pen 15 red color palette value
Param(15,1) - Pen 15 green color palette value
Param(15,2) - Pen 15 blue color palette value

The following table gives the default palette settings, used in non-COLOR MAP
and COLOR MAP modes. Note that the color values for black and white have
been switched. This prevents the printer from printing a large amount of black
for the background that is black on the screen.

Non-COLOR MAP Mode COLOR MAP Mode
Color Red Green Blue Red Green Blue
0 90 88 85 90 88 85
1 4 4 29 4 4 6
2 3 26 22 53 8 14
3 2 22 64 89 83 13
4 53 8 14 3 26 22
5 53 5 25 2 22 64
6 89 83 13 4 4 29
7 4 4 6 53 5 25
8 90 88 85 90 88 85
9 4 4 29 24 27 18
10 3 26 22 5 31 12
11 2 22 64 20 5 29
12 53 8 14 26 5 17
13 53 5 25 64 19 26
14 89 83 13 62 21 13
15 4 4 6 72 41 13

In non-COLOR MAP mode with the screen merged, colors 0 & 9-15 are used
when dumping the graphics screen to the printer. If the screen is in SEPARATE
mode, colors 0-7 are used. This is because the fourth memory plane is used
for text, leaving only three memory planes for graphics. In COLOR MAP mode
with the screen merged, color 0-15 are used. If the screen is in SEPARATE
mode, colors 0-7 are used.

The color palettes are loaded with the color values starting with palette 0, and
continues until either the array is exhausted or palette 15 is reached. The
following program shows how to set the color palettes.
10 INTEGER Param(15,2)
20 DATA 90,88,85, 4,4,6, 53,8,14, 89,83,13
30 DATA 3,26,22, 2,22,64, 4,4,29, 53,5,25
40 DATA 90,88,85, 24,27,18, 5,31,12, 20,5,29
50 DATA 26,5,17, 64,19,26, 62,21,13, 72,41,13
60 READ Param(*)
70 GESCAPE PRT,101,Param(*)
80 END

DSK-JETC Driver
The DSK-JETC dump driver provides support for any printer that accepts the
color variation of Hewlett Packard Printer Command Language (PCL) used in
the HP Color DeskJet printer. The command to load the DSK-JETC dump driver
is:
CONFIGURE DUMP TO "DSK-JETC"

If the output is too big to fit on the page in either portrait or landscape mode,
you can override the printer's default dots per inch (DPI) setting before
executing the DUMP command. The HP printer's default is 75 DPI. To change
this setting use one of the following commands (assuming the printer is
connected to ISC 10):

DPI Command 
100 OUTPUT 10;CHR$(27)&"*t100R"
150 OUTPUT 10;CHR$(27)&"*t150R"
300 OUTPUT 10;CHR$(27)&"*t300R"

The DSK-JETC driver has two options, BW and COL16. COL16 allows dumps to
be made in 16 colors and is the default. BW causes the dump to be made in
black and white, which can be useful for dumping text. In BW mode, the driver
output is identical to the HP-PCL driver. To change to BW mode, use this
command:
CONFIGURE DUMP TO "DSK-JETC;BW"

Cartridge Swapping
The printer normally requires the black cartridge for text and the color
cartridge for graphics. When text and graphics are alternately sent to the
printer, you will need to exchange cartridges.

Color Palette
The colors associated with the DeskJet 500c are fixed and can not be changed
like the PaintJet. You can, however, change your screen colors to match the
DeskJet colors.

CANON Driver
The CANON dump driver provides support for any printer that accepts the
Canon LBP Image Processing System Language (CLIPSL). The command to
load the CANON dump driver is:
CONFIGURE DUMP TO "CANON"

The driver sets the Canon printer to 100 DPI; this setting cannot be changed.
This driver does not have any options.

PS-DUMP Driver
The PostScript dump driver provides support for devices and software that
accept the PostScript graphics language. It provides support for both the
DUMP ALPHA and DUMP GRAPHICS commands. Note that DUMP ALPHA
commands are currently changed to DUMP GRAPHICS commands by the DOS

version of HTBasic unless a text screen is in use by the CRTA driver. Note that
in the UNIX versions of HTBasic the DUMP ALPHA command dumps the alpha
planes in graphics mode and the DUMP GRAPHICS command dumps the
graphics planes.

The PostScript dump driver produces a screen image intended to be rendered
on a US "A" size or European A4 size page. It scales the image so that its
longest dimension fits in the shortest dimension of the paper with an
adequate margin. When the EXPANDED keyword is used on the DUMP DEVICE
IS statement, screen dumps change from their normal portrait orientation to
landscape orientation.

The PostScript dump driver is loaded with the following statement:

CONFIGURE DUMP TO "PS-DUMP[;options]"

Options
The options are listed after the semicolon in the driver name, within the
quotes. If more than one option is specified, the option names are separated
by commas. The GREY and COLOR options are ignored in ALPHA dumps. The
options are as follows:

BW.    This option causes the driver to dump using the paper color for the
areas on the screen that were drawn using pen 0 and the ink color (usually
black) for the areas on the screen drawn with any other pen. This is reversed if
the INVERT option is also used. The BW option need not be specified explicitly;
it is the default.

GRAY.    This option causes the driver to render colors on the computer screen
as shades of gray on the printer. Each shade of gray is calculated using the
NTSC grayscale equation:

brightness = 11% blue + 59% green + 30% red.

Unless the INVERT option is used, the resulting brightness is inverted before
printing, so that dark colors on the computer screen print as light colors and
vice-versa.

COLOR.    The COLOR option causes the driver to output a color image of the
screen. The resulting PostScript screen image can only be rendered on a
device that supports Level 2 PostScript or the color extensions of Level 1.

INVERT.    By default, the driver makes images with black and white
exchanged from the values used on the screen. If the GRAY option is used, the
driver by default reverses the gray level of all pixels dumped from that seen
on the display. This is often suitable for output to a printer, where printing is
done with colored inks on white paper, but may not be suitable for film output
devices, where an exact image of the screen is wanted. The INVERT option
causes the colors or gray levels to be dumped exactly as they are on the
screen.

ADJUST.    Certain display adapters common in the PC environment use pixels
that have different sizes in the horizontal and vertical directions. Without the
ADJUST option, the driver dumps from these adapters using square pixels. This
may result in an image that is too wide for its height. The ADJUST option
forces the image to have a 4:3 aspect ratio regardless of its pixel size. The
ADJUST option is ignored in the UNIX versions of the driver.

A table in the Installing and Using manual summarizes the sizes and aspect
ratios of screen dumps produced by this driver for several PC screen types.

The APPEND Keyword
If the APPEND keyword is used in the DUMP DEVICE IS statement, the dump
driver appends all dump images after the first one to the existing file as new
pages. The driver inserts "%%Page" comments, used by some print spooling
software, into the file at the beginning of each page. If the dumps are done in
separate HTBasic sessions, the driver doesn't know which page it is on, so it
starts over with page 1. This may be a problem with some spooling software.
Also note that only one page can be present in a file that will be imported into
a word processor document.

ALPHA Dumps
(DOS Version.) The DUMP ALPHA command produces a dump at the top of a
US "A" or European A4 sized sheet of paper. If the APPEND keyword is used,
subsequent DUMP ALPHA commands produce similar dumps, each on a
separate sheet of paper.

PCX Driver
The PCX dump driver provides support for any device or program that accepts
the ZSoft PCX graphics interchange format. Most PC graphics packages and
word processors can import PCX files. Once an image is created within
HTBasic and saved in PCX format, it can then be modified by a graphics
package and placed within a word processing document. The command to
load the PCX dump driver is:

CONFIGURE DUMP TO "PCX;[mode[,]][format]"

where mode is the INVERT option and format can be BW, COL16, or COL256.
Both mode and format are optional.

The mode option allows the PCX file created to be inverted for displaying or
printing, if needed. For example, it is common to create an HTBasic graph with
white lines on a black background. However, many word processors expect
black lines on a white background. If the mode option is not specified, the
driver defaults to normal mode. In normal mode, all screen pixels that are on,
are sent to the driver as on. In INVERT mode, all screen pixels that are on, are
sent to the driver as off, and vise versa. The mode option should only be used
if the format selected is black and white, otherwise unpredictable results will
occur. If both mode and format are specified, mode must be first and must be
followed by a comma.

The format option allows you to specify the number of colors sent to the
device or file. If nothing is specified, the number of colors used will be
determined as described under "Number of Colors," earlier in this chapter. If
you want to use less than the default number of colors, use the format option.
For example,
CONFIGURE DUMP TO "PCX;INVERT,BW"

GIF Driver
The GIF dump driver provides support for software that accepts CompuServe
Graphics Interchange Format (GIF) files. The DUMP ALPHA command dumps
the alpha planes in graphics mode and the DUMP GRAPHICS command dumps
the graphics planes.

When the EXPANDED keyword is used on the DUMP DEVICE IS statement,
graphics screen dumps are rotated 90 degrees clockwise from their normal
orientation.

The GIF dump driver is loaded with the following statement:

CONFIGURE DUMP TO "GIF[;options]"

Options
The options are listed after the semicolon in the driver name, within the
quotes. If more than one option is specified, the option names are separated
by commas. The BW option is ignored in ALPHA dumps. The options are as
follows:

BW.    The driver normally produces a 16- or 256-color screen dump when
used with a color screen. The BW option causes the driver to produce a black-
and-white screen dump with color screens. In this dump, pixels of color zero
are dumped as black and pixels of any other color are dumped as white. (This
is reversed if the INVERT option is also specified.)

INVERT.    The driver normally dumps an image in the colors shown on the
screen. The INVERT option causes the driver to reverse black and white in the
dump. All other colors are unchanged.

The APPEND Keyword
If the APPEND keyword is used in the DUMP DEVICE IS statement, the GIF
dump driver appends all dump images after the first one to the existing file.
Note, however, that the screen type and colormap are stored when the first
image is dumped. If the screen type or colormap changes, the dump images
after the first one will not be correct. Also note that most software that uses
the GIF format cannot process multiple images in one file.

WIN-DUMP Driver
The WIN-DUMP dump driver provides support for any printer supported by
Windows that accepts bitmaps. The command to load the WIN-DUMP dump
driver is:

CONFIGURE DUMP TO "WIN-DUMP[;options]"

If a DUMP is made before doing a CONFIGURE DUMP, HTBasic automatically
loads and uses the WIN-DUMP driver.

Print Manager
The default interface select code (ISC) for DUMP DEVICE IS is 10, the WIN-
PRINT interface. The WIN-DUMP driver can not send dumps to any other ISC. If
you change the DUMP DEVICE to any other interface, error 150 occurs when a
DUMP is attempted. To send screen dumps to another interface, such as an
IEEE-488 printer, use a different dump driver.

Because Windows is a multitasking environment in which several programs
may try to print at once, Print Manager collects printer output into "jobs." Only
when a job is done is it printed. Normally, the WIN-DUMP driver prints a single
dump per print job. To mix text and screen dumps or multiple screen dumps
on a single page, output some text to the page before doing the dump. For
example,
10 ASSIGN @I TO 10

20 OUTPUT @I;"This is a screen dump:"
30 OUTPUT @I
40 DUMP GRAPHICS
50 ASSIGN @I TO *
60 END

The various settings, such as margins and line height, made in the WIN-PRINT
driver are honored by the WIN-DUMP driver. See the WIN-PRINT driver
documentation in the Installing and Using... for more information.

The EXPANDED keyword in the DUMP statement is ignored. The DUMP is made
in landscape or portrait mode depending on the printer settings, as explained
in the Installing and Using... manual.

DUMP Size
By default, the screen image is scaled until it fills 100% of the width between
the left and right margins. The size can be changed using GESCAPE code 39.
This example sets the scaling to 20% of the width between the margins:
10 INTEGER S(1:1)
20 S(1)=20
30 GESCAPE CRT,39,S(*)
40 END

INVERT Option
By default, the driver inverts all colors in the image. Black and white are
exchanged as well as other colors. This is often suitable for output to a black
and white printer, where printing is done with black ink on white paper, but
may not be suitable for color output devices, where an exact image of the
screen is wanted. The INVERT option causes the colors or gray levels to be
dumped exactly as they are on the screen.

Graphics Buffering
The DUMP statement is affected by graphics buffering (see the -buf switch).
When graphics buffering is off, parts of a window that are obscured or off the
edge of the screen are not dumped correctly. If the window is minimized, a
dump of the icon is returned. When graphics buffering is on, the window is
correctly dumped in all cases.

See Also:
DUMP, DUMP DEVICE IS

CONFIGURE KBD
Defines keyboard mappings for character sets.
Syntax: CONFIGURE KBD first-char TO string-name$

where: first-char = numeric-expression rounded to an integer.

Sample: CONFIGURE KBD 129 TO Mapping$

Description:
CONFIGURE KBD defines keyboard mappings for character sets not
supported by your operating system. When in effect, CONFIGURE KBD
substitutes characters from the given string in place of characters that come
from the keyboard. This remapping is good for ASCII characters, but does not
apply to function keys. (Use CONFIGURE KEY to redefine function keys.)
CONFIGURE KBD is not intended to be a complete keyboard driver, it merely
substitutes one ASCII value for another. The range of ASCII values which are
remapped starts at first-char and extends to (first-char - LEN(string-name$) -
1). The string specifies the ASCII values which should be substituted for values
in that range.

For example, if the keyboard is producing characters from the PC Code Page
850 character set, but the display has been set up to display the HP Roman-8
character set, the following program will cause characters from the keyboard
to be translated to the display character set so that characters are displayed
with the same glyphs as printed on the keyboard. If the keyboard is used to
produce a character not in the HP Roman-8 character set, it is translated to
CHR$(252), a solid block.

10 !setkbd2.bas
20 DATA 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
30 DATA 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
40 DATA 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47
50 DATA 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63
60 DATA 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79
70 DATA 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95
80 DATA 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111
90 DATA 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127
100 DATA 180,207,197,192,204,200,212,181,193,205,201,221,209,217,216,208
110 DATA 220,215,211,194,206,202,195,203,239,218,219,214,187,210,252,190
120 DATA 196,213,198,199,183,182,249,250,185,252,252,248,247,184,251,253
130 DATA 252,252,252,252,252,224,162,161,252,252,252,252,252,191,188,252
140 DATA 252,252,252,252,252,252,226,225,252,252,252,252,252,252,252,186
150 DATA 228,227,164,165,163,252,229,166,167,252,252,252,252,252,230,252
160 DATA 231,222,223,232,234,233,243,241,240,237,174,173,178,177,176,168
170 DATA 246,254,252,245,244,189,252,252,179,171,242,252,252,252,252,255
180 DIM Pc2hp$[256]
190 CLEAR SCREEN
200 PRINT "Set up PC (Code page 850) to HP (Roman-8) translation string"
210 FOR I=0 TO 255
220 READ C
230 Pc2hp$[I+1;1]=CHR$(C)
240 NEXT I
250 CONFIGURE KBD 0 TO Pc2hp$
260 END

See Also:
CONFIGURE KEY, CONFIGURE LABEL, LEXICAL ORDER IS

CONFIGURE KEY
Assigns editor functions to keyboard keys.
Syntax: CONFIGURE KEY key-number TO function-number

where: key-number = numeric-expression
function-number = numeric-expression

Sample: CONFIGURE KEY 1 TO NUM("<")

Description:
CONFIGURE KEY specifies what keyboard function a keyboard key generates.
This statement is version dependent. Statements generated for the DOS
version of HTBasic will not work with UNIX versions, etc. See "Using the
Integrated Environment" in the Installing and Using manual for an explanation
of how this statement is used in each specific version. The following example
for the DOS Version makes the Backspace key generate the LEFT function
CHR$(255)&"<":
CONFIGURE KEY 1 TO NUM("<")

See Also:
CONFIGURE KBD

CONFIGURE LABEL
Defines characters for the LABEL statement.
Syntax: CONFIGURE LABEL first-char TO string-expression

CONFIGURE LABEL first-char TO string-name$(*)

where: first-char = numeric-expression rounded to an integer.

Sample: CONFIGURE LABEL 128 TO CHR$(128)&CHR$(112)&CHR$(127)&
CHR$(15)&CHR$(0)
CONFIGURE LABEL 191 TO Newchars$(*)

Description:
CONFIGURE LABEL defines additional characters for use with the LABEL
statement. You may define one character by giving a simple string or string
expression or several characters by giving a string array. The first-char value
specifies the first character to define. Characters in the range 33 to 255 may
be defined. To delete a definition, use a zero length string for the definition.
See the User's Guide for a complete explanation of how to use this feature.
Each character in the definition string has the form CHR$(Move + x*16 + y),
where Move is 0 or 128, x ranges from 0 (far left) to 7 and y ranges from 0
(bottom) to 15. The baseline is y=5. The following example defines the
character "H":
CONFIGURE LABEL 72 TO CHR$(133)&CHR$(14)&CHR$(238)&
CHR$(101)&CHR$(138)&CHR$(106)

See Also:
CONFIGURE KBD, CONFIGURE KEY, LABEL, LEXICAL ORDER IS

CONFIGURE LONGFILENAMES
Specifies use of long filenames.
Syntax: CONFIGURE LONGFILENAMES { ON | OFF }

Sample: CONFIGURE LONGFILENAMES ON
CONFIGURE LONGFILENAMES OFF

Description:
Under later versions of DOS and Windows, long filenames are allowed in
addition to the standard 8.3 names on some file systems. The filenames can
be about 256 characters long and can have embedded spaces. However, by
default HTBasic removes spaces from file specifiers and CAT listings don't
have enough room for long filenames. To enable display and use of long
filenames, use the statement
CONFIGURE LONGFILENAMES ON

With LONGFILENAMES ON, spaces are not deleted from directory and file
specifiers since they may be significant. Also, the listing format for CAT is
changed to accommodate varying length filenames. It is roughly modelled
after the NT DIR command listing format.

See Also:
CAT

CONFIGURE MSI
Specifies HP style volume specifier translations.
Syntax: CONFIGURE MSI hp-msus TO path-specifier

CONFIGURE MSI { ON | OFF }

where: hp-msus = string expression of an HP BASIC msus.

Sample: CONFIGURE MSI ":,700,1" TO "c:\TEST\DATA\"
CONFIGURE MSI ":INTERNAL,4,0" TO "/usr/tmp/"
CONFIGURE MSI OFF

Description:
CONFIGURE MSI specifies a file path-specifier to be substituted for an HP
BASIC msus (mass storage unit specifier or volume specifier). Directory names
must end with a directory separator character. The separator character for
DOS and Windows is the backslash, "\". For UNIX it is the forward slash, "/". For
example, on DOS systems the following statements would assign the I/O path,
@In, to the file "B:\RUN2\DATA":
CONFIGURE MSI ":,700,1" TO "B:\RUN2\"
ASSIGN @In TO "DATA:,700,1"

Specifying a new path-specifier for a defined hp-msus replaces the previous
definition. Specifying a zero length path-specifier removes the previous
definition. Note that file names of one letter followed by an hp-msus (i.e.,
C:,702,1) and file names with an embedded colon (i.e., .xnews.sun:0) will be
misinterpreted. MSI translation can be turned off with the statement
CONFIGURE MSI OFF when such conflicts arise. To turn translation back on,
use CONFIGURE MSI ON.

See Also:
MASS STORAGE IS

CONFIGURE PRT
Specifies the value of PRT.
Syntax: CONFIGURE PRT TO device-selector

Sample: CONFIGURE PRT TO 701

Description:
CONFIGURE PRT specifies the device-selector that the PRT function returns.
It also does an implicit DUMP DEVICE IS PRT. For example, under DOS the
following statements output the message "Hello There" to the printer port
(assuming 10 is the printer port ISC).
CONFIGURE PRT TO 10
OUTPUT PRT; "Hello There"

See Also:
DUMP DEVICE IS, PRT

CONFIGURE SAVE
Sets the file type produced by SAVE.
Syntax: CONFIGURE SAVE ASCII { ON | OFF }

Sample: CONFIGURE SAVE ASCII OFF

Description:
CONFIGURE SAVE ASCIIsets the file type SAVE uses when saving a file to
disk. SAVE ASCII ON, the default, produces a LIF ASCII file. This type of file is
useful for exchanging programs with older HP BASIC workstations that can not
GET DOS ASCII or UNIX ASCII program files. The Installing and Using manual
has more information on Diskette Transfer Utilities.

SAVE ASCII OFF produces a DOS, Windows, UNIX compatible ordinary file.
Such a file is compatible with all popular program editors, most word
processors and newer releases of HP BASIC. RE-SAVE produces the same file
type as an existing file or the file type specified by CONFIGURE SAVE ASCII
if no file exists. GET can read either file type.

If you use CONFIGURE SAVE ASCII OFF you should not embed carriage-
returns or line-feeds in string literals since GET will interpret them as end-of-
line indicators.

See Also:
CONFIGURE BDAT, CONFIGURE CREATE, RE-SAVE, SAVE

CONJG
Returns the conjugate of a complex number.
Syntax: CONJG(numeric-expression)

Sample: C=SQRT(Z*CONJG(Z))

Description:
CONJG(Z) is defined as

CONJG(Z) = CMPLX(REAL(Z), -IMAG(Z))

Notice that the real part is unchanged. If the imaginary part is positive, it will
be made negative. If the imaginary part is negative, it will be made positive.
The effect in the complex domain is to mirror the number about the real axis.

See Also:
ABS, ARG, CMPLX, IMAG, REAL

CONT
Restarts a program which is PAUSEd.
Syntax: CONT [line-number | line-label]

Sample: CONT
CONT 550
CONT Thislabel

Description:
A program which is in the Paused state (as indicated by the Run Indicator) can
be restarted with the CONTINUE key or with the CONT command. If you
specify a line number or line label, it must be in the current context or the
MAIN context and execution continues at the specified line. If no line is
specified, execution resumes at the next line which would have been executed
had the program not been PAUSEd.

CONT can be used interactively to debug a program or to restart an un-
intentionally aborted program. Variables retain their current values. While the
program is PAUSEd, you can see and change the values of variables and use
any commands that do not change the program and then CONTinue the
program. If a change is made to any program statement, the program is
stopped and you cannot continue its execution with CONT

This command can only be executed from the keyboard. It cannot be included
in a program.

See Also:
PAUSE, RUNLIGHT

CONTROL
Sends control information to an interface or I/O path.
Syntax: CONTROL dest [,register] ; value [,value...]

where: dest = @io-path | interface-select-code
register = numeric-expression rounded to an integer
value = numeric-expression | numeric-array(*)

Sample: CONTROL @Path,5;Record
CONTROL 2;Column,Line
CONTROL 1801,19;Gains(*)

Description:
Use CONTROL to send control information to an interface or set parameters
associated with an I/O path. Information is sent by specifying a starting
register and a value. If no register is specified, register zero is used. If you
specify more than one value, the register number is incremented by one after
writing each value.

If the destination is an I/O Path, information is set in the I/O path rather than
being sent to the device or file. If the destination is an interface select code
(ISC), then the information is sent to the device driver for interpretation.
Consult the documentation for a particular device to find the usage for each
register.

The range of legal registers and the meaning of values written to them differ
for each interface. The User's Guide describes the CONTROL and STATUS
registers for many of the interfaces and for I/O paths.

Porting to HP BASIC
TransEra has added capabilities to several of the standard interfaces. The
additional registers resulting from these enhancements are always numbered
100 and above. In some instances HTBasic can pass arrays to and from a
single register. This capability is used for things like gain control lists in data
acquisition drivers. These new features are not available in HP BASIC. They
should not be used in programs that must be ported back to HP BASIC.

See Also:
STATUS, READIO, WRITEIO

COPY
Copies files.
Syntax: COPY old-file-specifier TO new-file-specifier [;PURGE]

Sample: COPY "Oldfile" TO A$&VAL$(I)
COPY "/Empl1/AFile" TO "/Empl2/AFile"
COPY A$&B$ TO "A:\DIR\FILE";PURGE

Description:
COPY makes a duplicate copy of a file and gives it a new name. Use the
COPYcommand as a program statement or as a keyboard command. If the
new-file-specifier already exists, an error is reported if PURGE is not present. If
PURGE is present, any existing file named new-file-specifier will be replaced.

HTBasic does not support the copy of a full disk to another disk. Use the
operating system for full disk copies. Under DOS you can use the DOS
"DISKCOPY" or "XCOPY" commands. The DOS XCOPY command (DOS 3.2 and
later) is an extended COPY command that, among other things, allows you to
copy entire disks when the disk sizes are not the same. Under UNIX,
commands like "tar" and "cpio" might be used. The DOS COPY command and
the UNIX mv command are used to copy individual files. If wildcards are
included in the command, then several files can be copied with a single
command.

See Also:
CAT, CREATE, CREATE ASCII, CREATE BDAT, MASS STORAGE IS, PERMIT,
PROTECT, PURGE, RENAME, SYSTEM$("MSI")

COPYLINES
Copies program lines from one location to another.
Syntax: COPYLINES start [,end] TO target

where: start, end and target = line-number | line-label

Sample: COPYLINES 10,100 TO 500
COPYLINES 1500 TO 2222
COPYLINES ALabel,BLabel TO CLabel

Description:
Use COPYLINES to copy a block of lines to a new location, while leaving the
original lines untouched. This differs from the MOVELINES statement since the
MOVELINES statement deletes the original program portion. If no ending line is
specified, only one line is copied. The target line cannot be in the range
specified by start and end. If start doesn't exist, the line immediately after
that line number is used. If end doesn't exist, the line immediately before that
line number is used. If a non-existent line label is specified, an error will be
reported.

Line numbers and labels are renumbered and updated if needed. However,
line number references in lines not being copied remain linked to the original
lines rather than the newly created lines. COPYLINES may not copy lines
containing a SUB program or DEF FN definition unless the new line number is
greater than any existing line number. An error will be issued if this is not the
case. This is because a SUB or DEF FN must follow all previous lines. If an error
occurs during a COPYLINES, the copy is terminated and the program is left
partially changed.

This command can only be executed from the keyboard while no program is
running. It cannot be included in a program.

See Also:
CHANGE, DEL, DELSUB, EDIT, FIND, INDENT, MOVELINES, REN, SECURE, XREF

COS
Returns the cosine of an expression.
Syntax: COS(numeric-expression)

Sample: A=COS(B)
Cosine=COS(X+45)
PRINT Cosine+COS(Angle)

Description:
The range of the cosine function is -1 and 1 inclusive. The numeric expression
is treated as an angle in the current trigonometric mode: RADians or DEGrees.
The default trigonometric mode is RADians.

COMPLEX Arguments
COS accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the angle must be specified in radians,
regardless of the current trigonometric mode. The real and imaginary parts of
COS(Z) are calculated (using real arithmetic) as

REAL(COS(Z)) = COS(REAL(Z))*COSH(IMAG(Z))
IMAG(COS(Z)) = -SIN(REAL(Z))*SINH(IMAG(Z))

Notice that intermediate values generated during the calculation of the
function can cause over or underflow errors for very large or small values of Z.

See Also:
ACS, ASN, ATN, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

COSH
Returns the hyperbolic cosine of an expression.
Syntax: COSH(numeric-expression)

Sample: A=COSH(B)
Hcosine=COSH(X+PI)
PRINT COSH(CMPLX(X,Y))

Description:
COSH accepts either a COMPLEX or REAL argument and returns a value of the
same type. The argument must be specified in radians, regardless of the
current trigonometric mode. The real and imaginary parts of COSH(Z) are
calculated (using real arithmetic) as

REAL(COSH(Z)) = COSH(REAL(Z))*COS(IMAG(Z))
IMAG(COSH(Z)) = SINH(REAL(Z))*SIN(IMAG(Z))

Notice that intermediate values generated during the calculation of the
function can cause over or underflow errors for very large or small values of Z.

See Also:
ACSH, ASNH, ATNH, COS, SINH, TANH

CREATE
Creates an ordinary file.
Syntax: CREATE file-specifier,records

where: records = numeric-expression, rounded to an integer.

Sample: CREATE "DOSASCII.TXT",75
CREATE "C:"&Filename$,Size
CREATE "/Net2/Users/Lori/AFile",50

Description:
The CREATE statement creates an ordinary file of the specified length on the
mass storage media, in the specified directory or in the current working
directory. CREATE does not open files; use ASSIGN to open files. On
computers that support extendable files (such as DOS, Windows, and UNIX),
the number of records is ignored and the file is created with a length of zero.

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF
ASCII, BDAT, BIN and PROG. In a CAT listing, the file type column is blank for
ordinary files or gives the operating system (i.e., "DOS" or "HP-UX"). Unlike
typed files, no special header or other embedded information is placed in the
file. Under DOS or Windows, an ordinary file with FORMAT ON is compatible
with all programs that support DOS ASCII files. Under UNIX, an ordinary file
with FORMAT ON and EOL of CHR$(10) is compatible with all programs that
support UNIX ASCII files.

Do not confuse the terms ASCII (DOS ASCII, Windows ASCII, UNIX ASCII, etc.)
and LIF ASCII. A DOS ASCII (or Windows ASCII) file is an ordinary file which
contains only printable characters and the end of each line is marked with a
carriage return and line feed. A UNIX ASCII file is an ordinary file which
contains only printable characters and the end of each line is marked with a
line feed. A LIF ASCII file is a typed file which contains string items preceded
by an item length and followed by a pad byte when the string length is odd.
When the term "ASCII" is used in the HTBasic manual set or in a CAT listing, it
refers to LIF ASCII. When the term is used outside the manual set, you will
need to determine for yourself what kind of ASCII is spoken of.

UNIX Usage Notes
Under UNIX, to create a file you must have write permission in the directory
where the file will be created and search permission in all directories in the
path of the new file. HTBasic requests that the file be created with file
permissions (mode) of 0666 (read and write allowed for anyone). UNIX takes
this value and clears any permissions from it that are set in the current
umask. (See your UNIX manuals for an explanation of umask.) The effective
user ID of the HTBasic process (which is usually your User ID) is assigned as
the file owner. To enable enforced file locks, the "set-group-ID on execution"
file permission is also set.

Under SunOS 4.x the file's group ID is set as follows: If the file system was not
mounted with the BSD file-creation semantics flag and the set-gid bit of the
parent directory is cleared, the file's group ID is set to the effective group ID of
the HTBasic process (which is usually your Group ID). Otherwise, it is set to
the group ID of the directory in which the file is created.

Under HP-UX, if the set-gid bit of the parent directory is cleared, the file's
group ID is set to the effective group ID of the HTBasic process (which is
usually your Group ID). Otherwise, it is set to the group ID of the directory in
which the file is created.

See Also:
ASSIGN, CAT, COPY, CREATE ASCII, CREATE BDAT, CREATE DIR, MASS
STORAGE IS, PURGE, RENAME, PERMIT, PROTECT, SYSTEM$("MSI")

CREATE ASCII
Creates a LIF ASCII file.
Syntax: CREATE ASCII file-specifier,records

where: records = numeric-expression, rounded to an integer

Sample: CREATE ASCII "Tables",75
CREATE ASCII "C:"&Text$,Size
CREATE ASCII "/DirX/DirY/DirZ/AFile",50

Description:
The CREATE ASCII statement creates a LIF ASCII file of specified length on
the mass storage media, in the specified directory or in the current working
directory. CREATE ASCII does not open files; use ASSIGN to open files. On
computers that support extendable files (such as DOS, Windows and UNIX),
the file is created with a length of zero, but a CAT listing shows the number of
records specified in the CREATE.

HTBasic supports typed files as well as ordinary files. HTBasic file types are LIF
ASCII, BDAT, BIN and PROG. In a CAT listing, LIF ASCII files are listed as "ASCII"
files.

A utility program, HPCOPY, is provided for most versions of HTBasic to transfer
LIF ASCII files between HP LIF diskettes and DOS disks. Data can also be
transferred between HTBasic and Series 200/300 computers by attaching an
interface between the computers and writing a short program on each
computer to transfer the data. Programs can be transferred in ASCII using
either of these methods.

Do not confuse the terms ASCII (DOS ASCII, NT ASCII orUNIX ASCII), and LIF
ASCII. A DOS or NT ASCII file is an ordinary file which contains only printable
characters, and the end of each line is marked with a carriage return and line
feed. A UNIX ASCII file is an ordinary file which contains only printable
characters and the end of each line is marked with a line feed. A LIF ASCII file
is a typed file which contains string items preceded by an item length and
followed by a pad byte when the string length is odd. When the term "ASCII" is
used in the HTBasic manual set or in a CAT listing, it refers to LIF ASCII. When
the term is used outside the manual set, you will need to determine for
yourself what kind of ASCII is spoken of.

UNIX Usage Notes
Under UNIX, to create a file you must have write permission in the directory
where the file will be created and search permission in all directories in the
path of the new file. HTBasic requests that the file be created with file
permissions (mode) of 0666 (read and write allowed for anyone). UNIX takes
this value and clears any permissions from it that are set in the current
umask. (See your UNIX manuals for an explanation of umask.) The effective
user ID of the HTBasic process (which is usually your User ID) is assigned as
the file owner. To enable enforced file locks, the "set-group-ID on execution"
file permission is also set.

Under SunOS 4.x the file's group ID is set as follows: If the file system was not
mounted with the BSD file-creation semantics flag and the set-gid bit of the
parent directory is cleared, the file's group ID is set to the effective group ID of

the HTBasic process (which is usually your Group ID). Otherwise, it is set to
the group ID of the directory in which the file is created.

Under HP-UX, if the set-gid bit of the parent directory is cleared, the file's
group ID is set to the effective group ID of the HTBasic process (which is
usually your Group ID). Otherwise, it is set to the group ID of the directory in
which the file is created.

File Headers
As opposed to ordinary files, typed files have a header containing necessary
information about the file. The presence of the header is transparent to BASIC
programs and no action should be taken to account for it. HTBasic can work
with files that have either an HTB or an HP LIF file header. The HTB file header
is 256 bytes. The HP LIF file header is 512 or 768 bytes. The CONFIGURE
CREATE statement determines which kind of header is created by this
statement. By default, HTB file headers are created.

See Also:
ASSIGN, CAT, COPY, CREATE, CREATE BDAT, CREATE DIR, MASS STORAGE IS,
PURGE, RENAME, PERMIT, PROTECT, SYSTEM$("MSI")

CREATE BDAT
Creates a BDAT (binary data) file.
Syntax: CREATE BDAT file-specifier, records [,record-size]

where: records = numeric-expression, rounded to an integer.
record-size = numeric-expression, rounded to integer, then rounded
up to even integer or one.

Sample: CREATE BDAT "Doc",50
CREATE BDAT Vol$&Rec$,Bytes,1
CREATE BDAT "/usr/bin/Group",10

Description:
The CREATE BDAT statement creates a binary data file with the specified
length and record size on the mass storage media, in the specified directory or
in the current working directory. CREATE BDAT does not open files; use
ASSIGN to open files. On computers that support extendable files (such as
DOS, Windows, and UNIX), the file is created with a zero length, but a CAT
listing shows the number of records specified in the CREATE.

The record-size is a numeric expression, rounded to an integer in the range 1
to 65534 and should be an even integer or one. This specifies the number of
bytes per record. The default is 256 bytes.

A utility program is provided with most versions of HTBasic to transfer BDAT
files between HP LIF diskettes and DOS disks. Data can also be transferred
between HTBasic and Series 200/300 computers by attaching an interface
between the computers and writing a short program on each computer to
transfer the data.

BDAT files must be written with MSB FIRST in order for the data to be
correctly readable by a Series 200/300 computer. CONFIGURE BDAT can be
used to specify the default byte ordering of created files. If CONFIGURE BDAT
is not used, HTBasic creates BDAT files using the native byte order of the
computer. For the DOS and Windows versions of HTBasic, the native byte
order is LSB FIRST; for the Sun and HP 700 versions it is MSB FIRST.

UNIX Usage Notes
Under UNIX, to create a file you must have write permission in the directory
where the file will be created and search permission in all directories in the
path of the new file. HTBasic requests that the file be created with file
permissions (mode) of 0666 (read and write allowed for anyone). UNIX takes
this value and clears any permissions from it that are set in the current
umask. (See your UNIX manuals for an explanation of umask.) The effective
user ID of the HTBasic process (which is usually your User ID) is assigned as
the file owner. To enable enforced file locks, the "set-group-ID on execution"
file permission is also set.

Under SunOS 4.x the file's group ID is set as follows: If the file system was not
mounted with the BSD file-creation semantics flag and the set-gid bit of the
parent directory is cleared, the file's group ID is set to the effective group ID of
the HTBasic process (which is usually your Group ID). Otherwise, it is set to
the group ID of the directory in which the file is created.

Under HP-UX, if the set-gid bit of the parent directory is cleared, the file's

group ID is set to the effective group ID of the HTBasic process (which is
usually your Group ID). Otherwise, it is set to the group ID of the directory in
which the file is created.

File Headers
HTBasic supports typed files as well as ordinary files. HTBasic file types are LIF
ASCII, BDAT, BIN and PROG. As opposed to ordinary files, typed files have a
header containing necessary information about the file. The presence of the
header is transparent to BASIC programs and no action should be taken to
account for it. HTBasic can work with files that have either an HTB or an HP LIF
file header. The HTB file header is 256 bytes. The HP LIF file header is 512 or
768 bytes. The CONFIGURE CREATE statement determines which kind of
header is created by this statement. By default, HTB file headers are created.

See Also:
ASSIGN, CAT, COPY, CREATE, CREATE ASCII, CREATE DIR, MASS STORAGE IS,
PERMIT, PROTECT, PURGE, RENAME, SYSTEM$("MSI")

CREATE DIR
 Creates a directory.
Syntax: CREATE DIR path-specifier

Sample: CREATE DIR "../branch/leaf"
CREATE DIR "C:\ADIR\BDIR"
CREATE DIR "SUB"

Description:
CREATE DIR creates a directory and is almost exactly like the HFS or SRM
command of the same name. It is the equivalent of the DOS MD or MKDIR
commands.

UNIX Usage Notes
Under UNIX, to create a directory you must have write permission in the
parent directory and search permission in all directories in the path of the new
directory. HTBasic requests that the directory be created with file permissions
(mode) of 0777 (read, write and search allowed for anyone). UNIX takes this
value and clears any permissions from it that are set in the current umask.
(See your UNIX manuals for an explanation of umask.) The effective user ID of
the HTBasic process (which is usually your User ID) is assigned as the
directory owner.

Under SunOS 4.x the new directory's group ID is set as follows: If the file
system was not mounted with the BSD file-creation semantics flag and the
set-gid bit of the parent directory is cleared, the new directory's group ID is
set to the effective group ID of the HTBasic process (which is usually your
Group ID). Otherwise, it is set to the group ID of the parent directory.

Under HP-UX, if the set-gid bit of the parent directory is cleared, the new
directory's group ID is set to the effective group ID of the HTBasic process
(which is usually your Group ID). Otherwise, it is set to the group ID of the
parent directory.

See Also:
CAT, COPY, CREATE, CREATE ASCII, CREATE BDAT, MASS STORAGE IS, PERMIT,
PROTECT, PURGE, RENAME, SYSTEM$("MSI")

CRT
Returns the integer 1, the CRT interface select code.
Syntax: CRT

Sample: PRINTER IS CRT
ENTER CRT;Array$(*)

Description:
The CRT function always returns the constant 1. It is a useful mnemonic and
documentation tool in referring to the CRT interface select code.

See Also:
KBD, PRT

CSIZE
Sets the character size for LABEL and SYMBOL.
Syntax: CSIZE height [, expansion-factor]

where: height = numeric-expression
expansion-factor = numeric-expression

Sample: CSIZE 8
CSIZE 10,0.7
CSIZE Height,Width/Height

Description:
CSIZE sets the character size (height) and the expansion factor (width/height)
of the text generated by the LABEL and SYMBOL statements. They are
specified in graphic display units. A negative height or expansion-factor
inverts the character in relation to that dimension. The default character
height is 5 and the default expansion factor is 0.6. These values are in effect
at start-up or when GINIT is executed or RESET is pressed.

See Also:
LABEL, LDIR, LORG, SYMBOL

CSUB
Compiled SUBprograms.
Description:

CSUBs are compiled subprograms that are created with special tools.
CSUBs are loaded with LOADSUB and deleted with DELSUB. A CSUB looks like
a SUB statement and it is called with a CALL statement. A CSUB cannot be
created or changed in BASIC and therefore any operation that checks for
syntax cannot be used. However, operations that are not syntax checked
(renumber, etc.) are allowed on a CSUB

The HTBasic Numeric Compiler is the primary tool for creating CSUBs for the
DOS and Windows versions. This compiler is designed so the casual HTBasic
user can produce fast numerically intensive subprograms. The user writes one
or more SUBs in BASIC which contain the calculation intensive code in his
program. The SUB or SUBs are then compiled, creating CSUBs which execute
many times faster than the original BASIC. No additional programming skill is
necessary. Speed of execution of numerically intensive subprograms is the
main goal of this compiler.

CSUB Toolkits are available for some versions of HTBasic and allow creation of
CSUBs in assembly or C. Contact your HTBasic reseller for more information.
Creation of CSUBs with the CSUB Toolkit is non-trivial. The process requires a
good deal of programming skill and the tools necessary are quite expensive.

A simple alternative to CSUB routines is small assembly routines stored in
integer arrays and accessed with the READIO, WRITEIO statements.

See Also:
CALL, DELSUB, LOADSUB, READIO, WRITEIO

CVT$
Convert strings from one alphabet to another.
Syntax: CVT$(old-string, cvt-name)

where: old-string = string-expression

cvt-name = string-expression

Sample: A$ = CVT$(B$,"HANKAKU KATAKANA TO HANKAKU HIRAGANA")
A$ = CVT$(B$,"HANKAKU HIRAGANA TO HANKAKU KATAKANA")

Description:
The CVT$ string function translates the characters in old-string from one
alphabet to another. It converts the string character by character and handles
a mixture of one- and two-byte character strings.

The CVT$ string function is used for two-byte languages like Japanese and is
only available in certain versions of HTBasic. The legal values for cvt-name,
available alphabets and character mapping between alphabets depends on
the specific version of HTBasic.

See Also:
FBYTE, SBYTE

DATA
Stores data items in the program.
Syntax: DATA [data-item] [,data-item...]

where: data-item = ["] string-literal ["] | numeric-constant

Sample: DATA 1.9,"Counts",3.14,56,"Number of Events"
DATA item1,item2,item3
DATA "comment-tail: !","comma: ,","quote: """
DATA 1984,Number of Days

Description:
DATA and READ statements can quickly and easily provide values for program
variables. All DATA statements in a context form a single data list. Each
context (main program and subprograms) has its own data list. Each variable
in the variable list of a READ statement picks up a value from the DATA list,
starting in sequence: the first variable in a READ picks up the first value in the
data list, then the next variable picks up the next value, etc. When a
subprogram is called, the current point in the sequence is remembered and
restored when control returns to the calling context.

The DATA items are treated as literals making it necessary for the computer
to process the numeric variables with the VAL function. An error is generated if
string values are found in numeric variables, but numeric values may be
placed in string variables. Leading and trailing blanks are deleted from
unquoted literals. Unquoted literals cannot contain quote marks, comment
tails or commas. To include one of these characters in a literal, you must use
quotation marks around the literal. A quotation mark is included inside the
literal by using two quote marks in the place where you wish to have one. To
include a COMPLEX number in a DATAstatement, list the real and imaginary
parts separately, separated by a comma.

You can make a READ start at the beginning of any DATAstatement by using a
RESTORE command.

See Also:
READ, RESTORE

DATE
Converts a string representing a date to a number of seconds.
Syntax: DATE(date-string)

where: date-string = string-expression.

Sample: SET TIMEDATE DATE("6 NOV 1992")
Cycle=DATE("7 JAN 1988)-DATE("1 JAN 1988")

Description:
The date, encoded in a string in the form "DD MMM YYYY", is converted to the
number of seconds since the start of the Julian Period in 4713 BC.

If DATE is used as the argument for SET TIMEDATE, then the clock will be set
to midnight of the date specified in the DATE argument. The date must be
within the legal range supported by your operating system.

Actually, the Rocky Mountain BASIC time base is slightly different than the
Julian Period, but can easily be converted. The following function converts a
date in the form "DD MMM YYYY" to the Julian Day:
10 DEF FNJd(A$)
20 RETURN (DATE(A$) DIV 86400)-1
30 FNEND

See Also:
DATE$, SET TIME, SET TIMEDATE, TIME, TIME$, TIMEDATE

DATE$
 Takes a numeric value representing seconds and formats it into a date string.
Syntax: DATE$(seconds)

where: seconds = numeric expression.

Sample: PRINT DATE$(TIMEDATE)
A$=DATE$(Newtime)

Description:
If TIMEDATE is used as the argument, DATE$returns the current date as a
string in the form DD MMM YYYY, where DD is the current day, MMM is the
current month in three letter abbreviated form and YYYY is the current year.

The numeric value specified is loosely based on the Julian Period. To convert a
Julian Day number to the string form "DD MMM YYYY", use the following
function:
10 FNJd2date$(Jd)
20 RETURN DATE$((Jd+10)*86400)
30 FNEND

See Also:
DATE, SET TIME, SET TIMEDATE, TIME, TIME$, TIMEDATE

DEALLOCATE
Frees memory space reserved by the ALLOCATE statement.
Syntax: DEALLOCATE variable-name [$] [(*)] [, ...]

Sample: DEALLOCATE P1$,Aarray(*),Code$(*)

Description:
ALLOCATE and ON event statements reserve memory on the BASIC stack;
therefore, a DEALLOCATE request may not immediately free memory for
another use if it is not the next area of memory to come off the stack.
Subprogram variables, including those ALLOCATEd, are automatically
DEALLOCATEd upon subprogram exit. If you try to DEALLOCATE a variable
which is not currently ALLOCATEd, you get an error.

See Also:
ALLOCATE, COM, COMPLEX, DIM, INTEGER, OPTION BASE, REAL, REDIM

DEF FN
Begins a user-defined function subprogram.
Syntax: DEF FN function-name[$] [(parameter-list)]

statements
RETURN { numeric-expression | string-expression }
statements
FNEND

where: statements = zero, one or more program statements,
including additional RETURN statements.
parameter-list = [param [,param...]] [,] [OPTIONAL param [,param...]]
[,] = the optional comma is only needed when items
occur on both sides of it.
param = [type] numeric-name [(*) [BUFFER]] |
string-name$ [(*) | BUFFER] |    @io-path
type = REAL | INTEGER | COMPLEX

Sample: DEF FNString$(@Path,REAL Array(*),OPTIONAL Factor$)
DEF FNNum(OPTIONAL X(*))
100 DEF FNFactorial(F)
110 IF F<0 THEN CAUSE ERROR 19
120 IF F<=1 THEN RETURN 1
130 RETURN F*FNFactorial(F-1)
140 FNEND

Description:
When typing in a new user-defined function subprogram, the DEF FN must be
the highest numbered line in the present program. The body of the function
then follows. SUB or DEF FN statements are not allowed inside the body of
the function. Lastly, the function definition is completed by a FNEND
statement. Optionally, comments about the function can follow the FNEND
statement. At least one RETURN statement must exist in the function
definition. The RETURN statement specifies the value that is to be returned.
The type of the value must match the type of the function name; a string
function must return a string value and a numeric function must return a
numeric value. If execution reaches the FNEND statement, an error will result.

When called, a list of arguments can be passed to the function and are
associated with the DEF FNparameters. Parameters to the right of the
OPTIONAL      keyword are optional and need not be passed in the argument
list. An error results if the function attempts to use an optional parameter with
no value passed to it. To avoid this, use NPAR to check the number of
arguments passed to the function.

All variables defined in a subprogram that are not COM variables are local to
the subprogram. Upon each entry to the subprogram they are set to zero.

A parameter may be used as a buffer if declared as a BUFFER in both the
calling context argument list and the DEF FNparameter list. The variables of a
parameter list cannot be declared in COM or other variable declaration
statements.

Porting Issues
Nested I/O is not allowed under HP BASIC. For example,

10 PRINT FNX
20 END
30 DEF FNX
40 PRINT "DEBUG:START"
50 RETURN 0
60 FNEND

will produce an error under HP BASIC. At the time of this manual printing,
nested I/O does not return an error under HTBasic but should not be used
because future improvements may make it illegal. Using nested I/O also
prevents the program from running under HP BASIC.

HTBasic limits the depth that recursion can occur. The depth is limited by the
size of the processor stack, not the BASIC workspace size. At the time of this
manual printing, the recursion limit is 21 for the DOS Version. Under UNIX, the
limit is some large number, limited by the size of the swap file or other
operating system quotas.

See Also:
CALL, FN, NPAR, SUB

DEG
Sets the trigonometric mode to degrees.
Syntax: DEG

Sample: DEG

Description:
All angle arguments and functions that return an angle measurement use the
current trigonometric mode which can be either radians or degrees. DEG sets
the trigonometric mode to degrees. The default trigonometric mode at start-
up or after a SCRATCH A is radians.

A subprogram will use the same trigonometric mode as its caller unless it
executes a RAD or DEG statement. Upon returning to the caller the previous
trigonometric mode is restored.

See Also:
ACS, ASN, ATN, COS, DEG, RAD, SIN, TAN

DEL
Deletes program lines.
Syntax: DEL start [, end]

where: start and end = line-number | line-label

Sample: DEL 100
DEL Go,Stop
DEL Thislabel,1500
DEL 100,1000

Description:
A range of program lines can be deleted by separating the starting and ending
line numbers with a comma. If only one line is specified, only that line is
deleted. Once a DEL statement has been executed, the specified lines cannot
be retrieved.

SUB and DEF FN statements can not be deleted unless the entire subprogram
is included in the range.

DEL cannot be executed from a running program, but can be executed while
the program is PAUSEd (after DEL executes, the program is placed in a STOP
state).

See Also:
CHANGE, COPYLINES, DELSUB, EDIT, FIND, INDENT, MOVELINES, REN,
SECURE, XREF

DELSUB
Deletes SUB or CSUB subprograms from memory.
Syntax: DELSUB context [,context...] [TO END]

where: context = subprogram-name | FN function-name | string-expression

Sample: DELSUB FNProc$
DELSUB Transform TO END
DELSUB Unit1,Unit2,Unit3,Unit4

Description:
DELSUB can delete one or more subprograms, CSUBs, or user-defined
function subprograms from memory. If TO END is specified in the DELSUB
statement, then the specified subprogram plus all following subprograms are
deleted to the end of the program. If you specify a name and two
subprograms both have that name, the first one is deleted. You cannot delete
a subprogram if it is currently active or if it is referenced by a currently active
ON event statement.

If a string expression specifies the subprogram name in the DELSUB
statement, the string expression is called a subprogram pointer because it
"points" to the subprogram rather than explicitly naming it. As the expression
changes, the pointer points to different subprograms. The following example
illustrates how this can be useful.
10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))
50 DELSUB Method$
60 SUBEND

The subprogram must be specified with the initial character in uppercase, and
subsequent characters in lowercase. Subprogram pointers can also be used in
CALL, INMEM, LOADSUB, and XREF statements.

See Also:
CALL, COPYLINES, CSUB, DEF FN, DEL, EDIT, FIND, INMEM, LOADSUB,
MOVELINES, REN, SECURE, SUB, XREF

DET
Returns the determinant of a matrix.
Syntax: DET [(numeric-array)]

Sample: Fmatrix=DET
PRINT DET(Fmatrix)

Description:
Use the DET function to find the determinant of a matrix. If no argument is
given, DET returns the determinant of the most recently inverted matrix. Zero
is returned if no matrix has been inverted since start-up, SCRATCH or SCRATCH
A. If the determinant of a matrix is zero, the matrix does not have a valid
inverse. If a very small value is returned compared to the matrix elements,
this may imply the matrix cannot accurately be inverted by computer
methods.

See Also:
DOT, MAT, SUM

DIGITZE
Inputs digitized X and Y coordinates.
Syntax: DIGITIZE x, y [, string-name$]

where: x and y = numeric-name

Sample: DIGITIZE Xcoor,Ycoor,Stat$
IF Ready THEN DIGITIZE X,Y

Description:
A point is digitized from the GRAPHICS INPUT IS device and the coordinates of
the point are assigned to the variables. The coordinates are in default units or
the units defined in a WINDOW or SHOW statement. A DIGITIZE may be
completed on the keyboard (if GRAPHICS INPUT IS is from the keyboard) by
pressing CONTINUE or ENTER. The DIGITIZE statement may optionally specify
a status string variable. This 8 byte status variable inputs the status of the
GRAPHICS INPUT IS device. The 8 byte status string variable is defined as
follows:

Byte Meaning 

1 Indicates End of Stream for a device supporting
continuous point stream digitizing. Byte 1 may be used
as the pen control value in a PLOT. It is "0" if it is the
last of a continuous point stream. It is "1" otherwise,
including points from a device supporting only single
point digitizing.

2 Comma delimiter character.
3 Clip Indicator - If the character is a "0", then the point

is outside the hard-clip limits. If a "1", the point is
inside the hard-clip limits, but outside the soft-clip limits
(see CLIP). If a "2" then it is inside the soft-clip limits.

4 Comma delimiter character.
5 Tracking ON/OFF - If the character is a "0", then

tracking is off; if a "1", then tracking is on.
6 Comma delimiter character.
7-8 Button Positions. If S$ is the status string and B is the

button number you wish to test, then
BIT(VAL(S$[7,8]),B-1) returns one if B is down and zero if B
is up.

See Also:
GRAPHICS INPUT IS, READ LOCATOR, TRACK, WHERE

DIM
Dimensions REAL arrays and strings.
Syntax: DIM item [,item...]

where: item = numeric-name (bounds) [BUFFER] |
string-name$ '['length']' [BUFFER] |
string-name$ (bounds) '['length']'
bounds = [lower-bound :] upper-bound [,bounds...]
bound and length = integer constants

Sample: DIM A(100),B(10,10),C(4,2,5,8)
DIM A$[200],B$(6,10)[100]
DIM Array(-64:63,8)
DIM Hold$[365] BUFFER, Array(200) BUFFER

Description:
The DIM statement is used to declare REAL numeric array and string
variables. The maximum number of array dimensions is six and the lower
bound must be less than or equal to the upper bound value. Each dimension
may contain a maximum of 32,767 elements. The default dimension of an
undeclared array is the number of subscripts found in its first occurrence, with
each dimension having the default lower bound of the value declared in
OPTION BASE and an upper bound of ten.

Each numeric array element is REAL and requires eight bytes of storage.
Strings require one byte of storage per character, plus two additional bytes. To
declare a variable a BUFFER, follow its name with the BUFFER keyword.
BUFFER variables are used with the TRANSFER statement.

Any number of DIM statements are allowed, anywhere in the program;
however, a DIM statement may not appear before an OPTION BASE
statement. Memory allocation is made during prerun and cannot be
dynamically deallocated. However, the dimensions can be changed in a
limited way by REDIM. Use ALLOCATE and DEALLOCATE for dynamic memory
allocation.

See Also:
ALLOCATE, COM, COMPLEX, DEALLOCATE, INTEGER, OPTION BASE, REAL,
REDIM, TRANSFER

DISABLE
Disables event-initiated branches.
Syntax: DISABLE

Sample: DISABLE

Description:
Disables all event-initiated branches, except ON END, ON ERROR, and ON
TIMEOUT.

See Also:
DISABLE INTR, ENABLE, ENABLE INTR, ON, OFF

DISABLE INTR
Disables interrupts from the specified interface.
Syntax: DISABLE INTR interface-select-code

Sample: DISABLE INTR 5
DISABLE INTR Isc

Description:
DISABLE INTR instructs the interface to disable interrupt generation.

See Also:
DISABLE, ENABLE, ENABLE INTR, ON INTR, OFF INTR

DISP
Displays items on the CRT display line.
Syntax: DISP [item-list [{,|;}]]

DISP USING image [; item-list]

where: item-list = item [{,|;}item-list]
item = numeric-expression | numeric-array(*) |
string-expression | string-array$(*) | TAB(column)
column = numeric-expression rounded to an integer
image = line-number | line-label | string-expression
See IMAGE for image syntax.

Sample: DISP Display$;
DISP TAB(8),Head,TAB(25),Descrip
DISP USING "5Z.DD";Figures
DISP USING Report;List(2),List(3),List(4)

Description:
Without USING

If USING is not specified, the standard numeric format will be used to display
items. The standard numeric format will display a number in floating point
form rounded to 12 digits if its absolute value is in the range 1E-4 to 1E+6.
The number will be displayed in scientific notation if it is outside this range.

The punctuation following the item to be displayed determines the item's
display field. The compact field is used if a semicolon follows the item; and the
default display field is used if a comma follows the item.

In both compact and default display form, numbers are displayed with 1
leading blank for positive numbers or the minus sign for negative numbers. In
compact field form numeric items are displayed with 1 trailing blank and
string items are displayed with no leading or trailing blanks. The default
display form displays items with trailing blanks to fill to the beginning of the
next 10-character field. A complex number is displayed in rectangular form,
first the real part, then an extra blank and finally the imaginary part.

An array may be displayed in row-major order using the full-array-specifier. If
punctuation follows an array then the array elements are displayed either in
compact field (if semicolon) or default display field (if comma) and additionally
the automatic EOL sequence will be suppressed.

With USING
See IMAGE for a complete explanation of the image list. The items specified in
the image list are acted upon as they are encountered. Each image list item
should have a matching display item. Processing of the image list stops when
no matching display item is found. Conversely, the image list is re-used
starting at the beginning to provide matches for all remaining display items.
The TAB function and any trailing punctuation may not be specified with
USING.

Control Characters
The following control characters have a special meaning when used in DISP
statements:

Character Meaning
CTRL-G, CHR$(7) sounds the bell.
CTRL-H, CHR$(8) moves the cursor back 1 space.
CTRL-L, CHR$(12) clears the display line (form feed).
CTRL-M, CHR$(13) moves the cursor to column 1 and the display

line is cleared by the next character sent to
the display (unless it is a CR).

Scrolling
If the data displayed on the DISPline is too long, the data is scrolled to the left
so that the final portion is completely displayed. If the DISPstatement ends
with a comma or semicolon, the next DISP statement concatenates data on
the end of the existing data. Again, the data is scrolled if necessary to display
the final portion of the data.

See Also:
IMAGE, LABEL, OUTPUT, PRINT

DISPLAY FUNCTIONS
Controls the display of control characters on the CRT.
Syntax: DISPLAY FUNCTIONS { ON | OFF }

Sample: DISPLAY FUNCTIONS OFF
IF Ctrlchar THEN DISPLAY FUNCTIONS ON

Description:
It is possible to disable the effect of the attribute characters on the CRT
device, displaying them instead of executing them. This is useful when
debugging OUTPUT. The DISPLAY FUNCTIONS ONstatement causes all
control characters to be displayed but not executed. The only exception is
carriage return, CHR$(13), which is first displayed and then the print cursor is
moved to column one of the next line. DISPLAY FUNCTIONS OFF returns
execution of attribute characters to normal.

This function is the equivalent to pressing the DISPLAY FCTNS key or to
executing the command, CONTROL CRT,4;State.

See Also:
ALPHA HEIGHT, ALPHA PEN, CLEAR LINE, CLS, KBD CMODE, KEY LABELS

DIV
Returns the quotient of an integer divide operation.
Syntax: dividend DIV divisor

where: dividend and divisor = numeric-expressions

Sample: PRINT "Miles =";Feet DIV 5280

Description:
The result of DIV is an INTEGER if both arguments are INTEGER and REAL
otherwise. If the divisor is zero, an error is returned. The definition of A DIV B
is

A DIV B = FIX(A/B).

See Also:
MOD, MODULO

DOT
Returns the dot product of two numeric vectors.
Syntax: DOT(vector, vector)

Sample: Dotproduct=DOT(Vecx,Vecy)
PRINT DOT(X,Y)

Description:
The dot, scalar or inner product of two vectors is defined to be the product of
the magnitudes of the vectors and the angle between them. This is equivalent
to the sum of the products of the components of the two vectors

See Also:
BASE, DET, DIM, MAT, RANK, REDIM, SIZE, SUM

DRAW
Draws a line to the X,Y location.
Syntax: DRAW x-position, y-position

where: x-position, y-position = numeric-expressions

Sample: DRAW 50,50
DRAW 10,75
DRAW Xx,Yy

Description:
A line is drawn from the current position to the specified coordinates using the
current line type and pen number. The DRAW statement can be used in
conjunction with the MOVE statement. DRAW always begins with the "pen
down" and ends with the pen down. MOVE always lifts the pen before moving
to the specified new position. See also PLOT which incorporates pen control
into one statement through its syntax. The x-position and y-position
arguments express a coordinate in the current SHOW or WINDOW units.

If the arguments of a DRAW statement specify a destination point which is
outside the clipping rectangle, a theoretical draw to that point is executed.
Only that portion of the vector which lies inside the clipping rectangle is
drawn. The portion of the vector which lies outside is clipped at the edge of
the clipping rectangle.

A DRAW to the current position draws a point. The PIVOT statement affects
the DRAW statement.

See Also:
CLIP, IDRAW, IMOVE, IPLOT, LINE TYPE, MOVE, PIVOT, PLOT, RPLOT, SHOW,
VIEWPORT, WINDOW

DROUND
Rounds a numeric-expression to the specified number of digits.
Syntax: DROUND(numeric-expression, digits)

where: digits = numeric-expression rounded to an integer.

Sample: Data=DROUND(Sample,10)
PRINT "Current =";DROUND(Amps,4)

Description:
If the number of digits is greater than fifteen then numeric-expression is not
rounded; if the number of digits is less than one then DROUND returns zero.

See Also:
CINT, FIX, FRACT, INT, PROUND, REAL

DUMP
Copies the contents of the display to a printing device.
Syntax: DUMP ALPHA [#device-selector]

DUMP GRAPHICS [source [TO #device-selector]]

where: source = device-selector

Sample: DUMP ALPHA
DUMP ALPHA #702
DUMP GRAPHICS #Dev
DUMP GRAPHICS Color TO #701

Description:
The contents of the ALPHA or GRAPHICS screen is copied to a printing
device. The source, by default, is the CRT. If any other device is specified then
no DUMP occurs. The DUMP is sent to the device specified or to the DUMP
DEVICE IS device. Either screen can also be dumped by pressing the DUMP
GRAPHICS or DUMP ALPHA keys. To avoid dumping the pseudo-runlight in the
lower right-hand corner of the screen, use RUNLIGHT OFF before dumping the
screen.

For a DUMP ALPHA, alphanumeric characters compatible with any ASCII
printer are sent to the printer. (Note: presently HTBasic sends ALPHA data as
GRAPHICS data unless a text mode screen is in use by the CRTA driver.)

For a DUMP GRAPH, graphics are sent to the printer in the printer language
specified by the CONFIGURE DUMP statement. If no CONFIGURE DUMP is
executed, the DOS version automatically uses "EPSON", Windows uses "WIN-
DUMP," while the UNIX versions automatically use "PS-DUMP." If MERGE ALPHA
WITH GRAPHICS is current, then ALPHA text will also be dumped to the
printer as part of the graphics data.

Porting Issues
HP BASIC supports only Hewlett-Packard printers, but HTBasic supports
several types of printers. For this reason, you may need to tell HTBasic what
language to use before doing the DUMP. Under DOS, the default language is
"EPSON", which supports both IBM and Epson graphic printers. Under
Windows, the default language is "WIN-DUMP." Under UNIX, the default
language is "PS-DUMP" (PostScript). If you are going to make screen dumps to
another type of printer, you must first use the CONFIGURE DUMP statement.
You may find it convenient to include this statement in your AUTOST file.
Chapter 4, "Printer and Image File Drivers," of the Installing and Using manual
explains what languages are supported and how to select them.

When dumping to a printer, the ratio of the image size on the printer may not
match that on the screen. This is caused by non-square pixels on the display
or on the printer. CGA, EGA and Hercules display adapters and Epson and IBM
printers are common devices with non-square pixels. The VGA display adapter
and HP-PCL printers have square pixels and, used together, will not produce
distortion.

See Also:
CONFIGURE DUMP, DUMP DEVICE IS

DUMP DEVICE IS
Defines the printing device used by DUMP.
Syntax: DUMP DEVICE IS destination [,EXPANDED] [;APPEND]

where: destination = device-selector | file-selector | pipe-specifier

Sample: DUMP DEVICE IS 10
DUMP DEVICE IS "PICTURE.PCX",EXPANDED
DUMP DEVICE IS "| lpr"

Description:
DUMP DEVICE IS specifies what destination receives the dump data when
DUMP ALPHA or DUMP GRAPHICS is executed without a device selector. GINIT
resets the destination to the default, which is PRT. Use the CONFIGURE DUMP
statement to specify the graphic printer language used.

The number of colors produced in the dump depends on both the display and
printer drivers. See CONFIGURE DUMP for more information.

Note: Many computer displays and many printers do not have square pixels.
This results in distortion when the image is printed. This is normal and can be
partially compensated for, if needed, by adjusting the WINDOW to apply an
inverse distortion to the image drawn on the display. CGA, EGA, MGC and
EPSON are common devices with non-square pixels. VGA and HP-PCL are
common devices with square pixels.

Destinations
The output can be sent to a device (usually a printer), file or pipe. If the
destination is a file, it must be an ordinary file or a BDAT file.

Pipes are supported under UNIX, but not DOS. A pipe-specifier must begin with
the "|" pipe character and is followed by a command to start the process that
the output is sent to. When a DUMP occurs, the information is sent to the
process.

Options
If EXPANDED is included, the image is rotated by 90 degrees. Depending on
the screen and printer types, the image may also be printed larger than when
EXPANDED is not included.

If APPEND is specified and the DUMP is to a file, the file position is moved to
the end-of-file before each DUMP. For some DUMP types, multiple images in a
file are not supported. For example, the PCX file definition only supports one
image per file. If APPEND is specified in these cases, the result is undefined.
If APPEND is not specified, the file is overwritten with each DUMP.

See Also:
CONFIGURE DUMP, DUMP, PLOTTER IS, RUNLIGHT

DVAL
Converts a binary, octal, decimal or hexadecimal string to a real number.
Syntax: DVAL(string-expression, radix)

where: radix = numeric-expression rounded to an integer

Sample: Value=DVAL(Binary$,Two)
PRINT DVAL("EFA50",16)

Description:
DVAL is like VAL, in that a number in string form is converted to numeric form.
Unlike VAL, which can only convert decimal numbers, DVAL can convert
numbers in binary, octal, decimal and hexadecimal.

The string expression contains the number to be converted and the radix must
be either 2, 8, 10 or 16. The characters in the string must be legal digits in the
specified radix. For example, a binary number can only have characters "0"
and "1". Only decimal numbers are allowed to have a minus sign preceding
them.

The number expressed in the string is first converted to a 32 bit integer. If the
most significant bit is set, the result will be negative. Thus, the string must
represent a number within the range of a 32 bit signed integer. The range
restrictions are as follows:

Radix Legal Range
binary 0 through 11111111111111111111111111111111
octal 0 through 37777777777
decimal -2147483648 through 2147483647
hexadecimal 0 through FFFFFFFF

See Also:
DVAL$, IVAL, IVAL$, VAL, VAL$

DVAL$
Converts a number to a binary, octal, decimal or hexadecimal string.
Syntax: DVAL$(whole-number, radix)

where: whole-number = numeric-expression rounded to a whole number
radix = numeric-expression rounded to an integer

Sample: Hex$=DVAL$(Number,Sixteen)
PRINT DVAL$(Quantity,8)

Description:
DVAL$ is like VAL$, in that a numeric value is converted to string form. Unlike
VAL$, which always expresses numbers in decimal form, DVAL$ can also
express numbers in binary, octal, decimal and hexadecimal form.

Whole-number contains the number to be converted which must be in the
range of a 32 bit two's complement integer, -2147483648 through
2147483647. Radix must be either 2, 8, 10 or 16.

The converted numbers have leading zeros as necessary to fill unused digit
positions. A minus sign is only produced for decimal numbers. The range of
numbers produced is the same as those accepted by DVAL.

See Also:
DVAL, IVAL, IVAL$, VAL, VAL$

EDIT
Puts you into program EDIT mode.
Syntax: EDIT [target [,increment]]

EDIT SUB subprogram-name [,increment]
EDIT FN function-name [,increment]

where: target = line-number|line-label|SUB name|FNname
increment = integer constant in the range 1-32766.

Sample: EDIT
EDIT 100,10
EDIT Alabel
EDIT SUB Fire62
EDIT FNPete
EDIT FNOranges

Description:
In the syntax diagram above, the space between FN and the function-name is
shown for readability. When you type the statement, do not include the space
after FN.

The EDIT command starts the full screen program editor. It automatically
generates and maintains the program line numbers. The default increment for
line numbers is 10, but may be specified with the increment value.

If you are editing an existing program, the current edit line will be either the
last line edited, the last line with an error or the line specified in the EDIT
command. You may specify either a line number, line label, SUB program
name, or DEF FN function name. If you are editing a new program, the first
line number will be 10 unless a line number is specified.

EDIT mode is ended by pressing CLR SCR (HOME on a PC), PAUSE, RUN or
STEP keys. It can also be terminated by entering a CAT or LIST command.
EDIT can only be executed from the keyboard. It cannot be included in a
program.

While in EDIT mode, the arrow keys, LEFT WORD, RIGHT WORD, PREV, NEXT,
BOL, EOL, BEGIN and END keys can be used to move around the program. The
INS CHR key toggles the overstrike mode to insert mode and back again. This
remains in effect while on the same program line and is reset to overstrike
mode when a new line is displayed. The DEL CHR key deletes the character
under the cursor. The DEL LEFT key deletes the character to the left of the
cursor.

To insert a line between two program lines or before the first line of the
program, position the cursor on the line following the place you wish to insert
the new line and then press the INS LN key. If necessary, the program will be
partially renumbered and a new line number will be generated for you. You
may insert as many program lines as is required. To end the insert line mode
press the UP, DOWN, PREV, NEXT, BEGIN, END or INS LN keys. To delete a line,
position the cursor on the line you wish to delete and press the DEL LN key.

The changes to a line are not made permanent until you press ENTER. If you
wish to abort the changes, press an arrow key or any other key which moves
the cursor to another line.

Keyboard commands can still be entered in EDIT mode by first deleting the
automatic line number and then entering the command. To delete the line
number, backspace over it and then type over the top of it or use the DEL
LEFT key to delete back over the top of it or use CLR LN (not DEL LN) to clear
the current line.

Using keyboard commands you can move a block of text from one place in the
program to another (MOVELINES) or copy a block of text from one place to
another (COPYLINES). Both of these commands transparently handle any line
reference renumbering.

FIND can be used to search for a string of characters. CHANGE can be used to
find a string and replace it with another string.

INDENT can be used to automatically indent program constructs. REN can be
used to renumber part of or the entire program. DELSUB is used when a
subprogram needs to be deleted.

Use "HELP #" to display a list of the keyboard key mappings.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT KEY, FIND, INDENT, MOVELINES,
REN, SECURE, STORE, XREF

EDIT KEY
Puts you into softkey EDIT mode.
Syntax: EDIT KEY key-number

where: key-number = integer constant in the range 0-23.

Sample: EDIT KEY 3

Description:
The EDIT KEY command edits softkey macros. It is entered by typing EDIT
KEY n (where n is the softkey number), or by pressing EDIT, the softkey you
wish to edit and then the ENTER key. The current definition for the requested
key is displayed and the normal editing keys are used to modify the definition
(see EDIT). When you are finished press ENTER to save the key definition.

A softkey macro is not available while an ON KEY statement is currently active
for that key.

See Also:
EDIT, KBD CMODE, KEY LABELS, KEY LABELS PEN, LIST KEY, LOAD KEY, OFF
KEY, ON KEY, READ KEY, SCRATCH, SET KEY, STORE KEY, USER KEYS

ENABLE
Enables all event-initiated branches suspended by DISABLE.
Syntax: ENABLE

Sample: ENABLE

Description:
ENABLE does not affect ON END, ON ERROR and ON TIMEOUT.

See Also:
DISABLE, DISABLE INTR, ENABLE INTR, ON, OFF

ENABLE INTR
Enables interrupts from a specified interface.
Syntax: ENABLE INTR interface-select-code [;enable-mask]

where: enable-mask = numeric-expression rounded to an integer.

Sample: ENABLE INTR 12
ENABLE INTR Isc;Bitmask

Description:
This command enables interrupts from a specified interface for event-initiated
branching. An optional bit mask is stored in the interface interrupt-enable
register. The default bit mask is the previous bit mask for that interface, or if
there is no previous bit mask then a bit mask of all zeros is used. The meaning
of the bit mask depends on the interface; consult the interface
documentation.

See Also:
DISABLE, DISABLE INTR, ENABLE, ON, OFF

END
Marks the end of the program.
Syntax: END

Description:
An END statement is required at the end of the main program. Any
subprograms follow the main program END statement. Comments may also
follow the main program END statement.

See Also:
FNEND, SUBEND, PAUSE, STOP

ENTER
Inputs data and assigns it to variables.
Syntax: ENTER source [USING image] [;item-list]

where: source = @io-path [,record-number] |
device-selector |
string-name$ [(subscripts)]
image = line-number | line-label | string-expression
See IMAGE for the image string syntax.
item-list = item [{,|;} item-list]
item = numeric-name [{(subscripts) | (*)}] |
string-name$ [{[(subscripts)] '['sub-string']' | (*)}]

subscripts = subscript [,subscript...]

Sample: ENTER 702;Numeral,Alph$
ENTER Dev;P1;P2;P3;P4
ENTER @Picto,Pstr;Array(*)
ENTER @Access USING 20;Lexical$(Def)

Description:
Numeric data, array elements or character strings are input from a specified
source and the values are assigned to variables. A number builder changes
ASCII data to numeric data for assignment to a numeric variable. The number
builder ignores blanks and leading non-numeric characters and terminates on
the first character received with EOI true or on the first non-numeric character.
Arrays may be entered, in row major order, using the full array specifier, "(*)".

String items are terminated with either a line-feed character, a carriage-
return/line-feed character pair, an EOI signal or upon filling the dimensioned
length of the string. The line-feed or carriage-return/line-feed characters are
not entered into the string.

Complex numbers are entered in rectangular form, real part first, followed by
imaginary part. The two parts should be separated by EOI or by a non-numeric
character.

Sources:
File.    A file ASSIGNed to an I/O path may be used as the source. An ASCII file
is read as ASCII characters. With FORMAT ON, BDAT and ordinary files are also
read as ASCII characters. With FORMAT OFF, BDAT and ordinary files are in
internal format (see OUTPUT for a description of internal formats). All files may
be accessed serially and additionally, BDAT and ordinary files may be
accessed randomly by including a record number.

Pipe.    A pipe may be used as the source. The pipe must be readable and
have an associated I/O path. The ASSIGN statement determines the attributes
used. With FORMAT ON, pipes are read as ASCII characters. With FORMAT OFF,
pipes are read assuming data is in internal format (see OUTPUT for a
description of internal formats). Pipes must be accessed serially.

String.    A string may be used as the source. ENTER begins at the beginning
of the string and reads serially. Data is assumed to be in FORMAT ON format.

Device.    A device-selector or I/O path may be used as the source to enter

items from a device. The default system attributes are used if the source is a
device-selector. The ASSIGN statement determines the attributes used if the
source is an I/O path. If the device selector is 1, then the source is the CRT. If
the device selector is 2, then the source is the keyboard. To terminate a
keyboard entry, and append a carriage-return/line-feed, press ENTER. To
terminate an entry, with no characters appended, press CONTINUE.

Buffer.    A buffer ASSIGNed to an I/O path may be used as the source. The
ASSIGN statement determines the attributes used. The buffer empty pointer
points to the beginning of the data to be removed and ENTERed. The empty
pointer is updated as data is ENTERed.

With USING
See IMAGE for a complete explanation of the image list. The items specified in
the image list are acted upon as they are encountered. Each image list item
should have a matching enter item. Processing of the image list stops when no
matching enter item is found. Conversely, the image list is reused starting at
the beginning to provide matches for all remaining enter items. FORMAT ON is
used in connection with ENTER USING, even if FORMAT OFF has been
specified.

Records
When entering from a file, you may specify a record number. The first record
in the file is record 1. The record size for BDAT files is specified when the file
is created and defaults to 256 bytes. For other file types the record size is 1;
thus the record number is actually the offset into the file. The first byte of the
file is at offset 1. When a record number is specified and the record size is not
1, if the ENTER requires more data than a single record, an End of Record
error or event occurs.

See Also:
IMAGE, INPUT, LINPUT, OUTPUT, PRINT

ENVIRON$
Returns information from the operating system environment.
Syntax: ENVIRON$(string-expression | numeric-expression)

Sample: PRINT "Your path is ";ENVIRON$("PATH")
LOAD ENVIRON$("HTB")&"\autost",1
A$(I)=ENVIRON$(I)

Description:
The ENVIRON$ function returns the value assigned to an operating system
environment variable. You may choose which environment variable to read in
one of two ways. If you know the name of a variable, you can specify it by
name and its definition will be returned. If the variable does not exist or if the
definition is blank, a zero length string is returned. You can also specify a
number, in which case both the corresponding variable, an equal sign and the
definition are returned. The first variable is number 1.

Under DOS, the PATH, PROMPT and SET commands assign a value to an
environment variable. Typically, this is done in your AUTOEXEC.BAT file. Under
the UNIX C shell, setenv assigns a value to an environment variable, typically
in your .cshrc or .login shell script. Under the UNIX Bourne shell (sh), export
assigns a value from a previously created shell variable. This is typically done
in your .profile shell script.

As a DOS example, assume only the following DOS commands have been
executed:
PATH C:\;C:\DOS;C:\HTB
SET HTB=C:\HTB
PROMPT PG

then ENVIRON$("PATH") will return "C:\;C:\DOS;C:\HTB" and ENVIRON$(1)
will return "PATH=C:\;C:\DOS;C:\HTB".

Under Windows the names of environment variables are case insensitive. In
DOS and UNIX versions, they are case sensitive.

Porting to HP BASIC
ENVIRON$ is a new HTBasic function that is not available in HP BASIC. It
should not be used in programs that must be ported back to HP BASIC.

See Also:
COMMAND$, EXECUTE, SYSTEM$

ERRL
Compares a line number with ERRLN.
Syntax: ERRL(line-number | line-label)

Sample: IF ERRL(850) THEN CALL Route_error
IF ERRL(1260) THEN GOTO 5630
IF NOT ERRL(Record) THEN Lock

Description:
ERRL returns a 1 if ERRLN is equal to the specified line (in the current context)
and 0 otherwise. ERRL can be used in IF statements to direct program flow in
an error handling routine. ERRL is not keyboard executable.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRLN, ERRM$, ERRN, ERROR RETURN, ERROR
SUBEXIT, OFF ERROR, ON ERROR

ERRLN
Returns the program line number on which the last error occurred.
Syntax: ERRLN

Sample: PRINT ERRLN
Error1=ERRLN

Description:
The number of the program line on which the most recent error occurred is
returned. If no error has occurred, the ERRLN function returns 0.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRM$, ERRN, ERROR RETURN, ERROR
SUBEXIT, OFF ERROR, ON ERROR

ERRM$
Returns the error message text of the last error.
Syntax: ERRM$

Sample: OUTPUT @Errorlog;ERRM$
PRINT ERRM$

Description:
ERRM$ returns the line number (ERRLN), error number (ERRN) and associated
error message text. The null string is returned if no error has been generated
since start-up, LOAD, GET, SCRATCH or CLEAR ERROR.

Porting Issues
HTBasic error messages are usually similar to those in HP BASIC. Programs
that depend on ERRM$ returning the exact same message as HP BASIC
should be modified accordingly. In particular, where an HP BASIC error
message has seemed less descriptive than it should be, HTBasic returns a
more descriptive message.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRN, ERROR RETURN, ERROR
SUBEXIT, OFF ERROR, ON ERROR

ERRN
Returns the last error number.
Syntax: ERRN

Sample: A=ERRN
IF ERRN=75 THEN CALL Exroute
PRINT "Execution Error Number = ";ERRN
10 ON ERROR GOTO 90
20 PRINT X^Y
. . .
80 STOP
90 IF ERRN=27 THEN PRINT "Oops!"
. . .

Description:
The last program execution error number is returned; or if no error has
occurred, a zero is returned. ERRNmay be used in IF statements to direct
program flow in an error handling routine.

Porting Issues
Any error number of 2000 or greater is an HTBasic extension to HP BASIC. Not
all errors that can occur under HP BASIC can occur under HTBasic. Appendix A
contains a list of errors that can occur.

In general and whenever possible, the error numbers returned for errors are
the same as those returned by HP BASIC. But in some instances the operating
system or environment in which HTBasic runs makes it impossible or
impractical to return the same number.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERROR RETURN, ERROR
SUBEXIT, OFF ERROR, ON ERROR

ERROR RETURN
Returns program execution to the line following the most recent error.
Syntax: ERROR RETURN

Sample: IF Done THEN ERROR RETURN

Description:
ERROR RETURN should only be used in connection with ON ERROR GOSUB. A
regular RETURN causes the line which generated the error to be re-executed.
ERROR RETURN skips the line which generated the error and continues
execution with the next line.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR SUBEXIT,
OFF ERROR, ON ERROR, RETURN

ERROR SUBEXIT
Returns subprogram execution to the line following the most recent error.
Syntax: ERROR SUBEXIT

Sample: ERROR SUBEXIT
IF Done THEN ERROR SUBEXIT

Description:
ERROR SUBEXIT should only be used in connection with ON ERROR CALL. A
regular SUBEXIT causes the line which generated the error to be re-executed.
ERROR SUBEXIT skips the error line and continues execution with the line
following the line in error.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN,
OFF ERROR, ON ERROR, SUBEXIT

EXECUTE
Executes an operating system command.
Syntax: EXECUTE [command] [;option [,option]...]

where: command = string-expression
option = {WAIT OFF | SAVE ALPHA OFF | RETURN numeric-variable}

Sample: EXECUTE "DIR"
EXECUTE "fgrep BASIC *"

Description:
The default command interpreter for your operating system is invoked and
given the command specified for execution. When the command has
completed, control is returned to HTBasic. If the command argument is not
specified then the default command interpreter is invoked, you are given a
prompt and you may issue one or more commands. You must terminate the
command interpreter to return to HTBasic. From DOS or NT, type "EXIT". From
most UNIX shells, type "exit".

After the command has completed execution, if the WAIT OFF option is not
specified the message "Hit any key to continue" will be displayed and HTBasic
waits until you press any keyboard key. If the WAIT OFF option is specified,
control immediately returns to the next HTBasic statement.

If the SAVE ALPHA OFF option is not specified, the screen is cleared before
the command is executed and the screen is restored after the command has
finished. If the SAVE ALPHA OFF option is specified, the screen is not cleared
or restored. Messages written to the screen will write over the current screen.
You can, however, redirect the output messages to a file and use the WAIT
OFF option to prevent writing over the screen. Changes made to the display
hardware can leave HTBasic confused. For example, if the EXECUTEd
program changes the color map, HTBasic does not know the change has
occurred and will continue using the new color map, assuming the HTBasic
map is in place.

If the RETURN option is specified, the executed program's termination error
value is returned in the numeric variable. Under DOS or UNIX this is the
command interpreter's termination value.

When control is returned to HTBasic, an attempt is made to service any events
which occurred while the command interpreter had control.

When operating under a window system, the WAIT OFF and SAVE ALPHA
OFF options are ignored. To prevent the appearance of a DOS box when
running a Windows application use the following syntax:

EXECUTE CHR$(13) & "appname.exe"

DOS Version Usage Notes
The COMSPEC environment variable must be set correctly to use EXECUTE. It
is used to locate the command interpreter.

You should use the -MINREAL and -MAXREAL switches on CFIG386 (which are
explained in the Installing and Using manual) to set aside real memory for the
EXECUTE statement. As shipped, the -MINREAL switch is set to 4096 16-byte

paragraphs (64 kilobytes). This is enough for COMMAND.COM or small
programs, but must be increased for larger programs. There is no easy way to
determine the value to use, however there is a straight-forward way: Try larger
and larger values until you find one that will work. The size of the .EXE file is a
rough indicator of the minimum amount of memory required by a program.

Windows Version Usage Notes
Windows NT    Under Windows NT, CMD is the command interpreter used if
no command is specified. To execute a built-in command like "DIR", use
"cmd /c DIR". An extension of .EXE is assumed for the command; to execute
a .BAT, .CMD or .COM file, include the extension.

Windows 3.1    Under Windows 3.1, other Windows programs can be specified
by name.    To run DOS programs, include "COMMAND.COM /C" before the
program name.

UNIX Usage Notes
The shell specified in the SHELL environment variable is used to spawn the
command. If no SHELL variable exists, "/bin/sh" is used.

See Also:
QUIT

EXOR
Performs a Logical exclusive OR of two expressions.
Syntax: numeric-expression EXOR numeric-expression

Sample: I=1 EXOR 0
IF Former EXOR Latter THEN Do
IF A<B EXOR C=D THEN PRINT "ONLY ONE CONDITION IS TRUE"

Description:
A EXOR B returns a one if exactly one of A or B is non-zero and a zero if A and
B are both zero or both non-zero.

See Also:
AND, OR, NOT

EXP
Returns "e" raised to a power.
Syntax: EXP (numeric-expression)

Sample: X1=EXP(Y*10)
X2=EXP(-Y^3)

Description:
EXP returns the value of "e" raised to the power specified by the numeric
expression. "e" is the base of the Naperian or Natural logarithm. Its value is
approximately 2.718 281 828 459 05.

COMPLEX Arguments
EXP accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the real and imaginary parts of EXP(Z)
are calculated (using real arithmetic) as

REAL(EXP(Z)) = EXP(REAL(Z))*COS(IMAG(Z))
IMAG(EXP(Z)) = EXP(REAL(Z))*SIN(IMAG(Z))

IMAG(Z) specifies radians, regardless of the current trigonometric mode.
Notice that intermediate values generated during the calculation of the
function can cause over- or underflow errors for very large or small values of
Z.

See Also:
LOG, LGT

FBYTE
Checks for first byte of a two byte character.
Syntax: FBYTE(string)

Sample: PRINT FBYTE(A$)
IF FBYTE(A$[I]) THEN PRINT "Two Bytes"

Description:
FBYTE is used with SBYTE to determine whether a character is one or two
bytes long. FBYTE returns a one if the first byte of the string argument is in the
valid range for the first byte of a two byte character.

This function is only available and enabled in specific versions of HTBasic.

See Also:
CVT$, SBYTE

FIND
Searches for specified characters in a program.
Syntax: FIND "characters" [IN start [,end]]

where: characters = string-literal
start and end = line-number | line-label

Sample: FIND "PRINT"
FIND "Xx=" IN Math,Result

Description:
FIND allows you to search for arbitrary strings in the program. Once found,
the program line may be modified or deleted. The search continues after
pressing ENTER or DEL LN. If no modification or deletion is needed, pressing
CONTINUE searches for the next occurrence. You may exit FIND mode by
pressing any other function key. The string literal must match exactly. The
case of characters is significant.

If start is specified, the search begins with that line. If the line doesn't exist,
the line immediately after that line number is used. If a non-existent line label
is specified, an error will be reported. If start is not specified, searching will
begin with the current line.

If end is specified, the search ends with that line. If the line doesn't exist, the
line immediately before that line number is used. If a non-existent line label is
specified, an error will be reported. If end is not specified, searching will end
with the last line.

FIND is not allowed while a program is running, but it may be used when the
program is paused. FIND is aborted if a change exceeds the maximum
allowable length of a program line or if a line number is altered. FIND can only
be executed from the keyboard. It cannot be included in a program.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT, INDENT, MOVELINES, REN, SECURE,
XREF

FIX
Truncates a value to INTEGER.
Syntax: FIX (numeric-expression)

Sample: DRAW FIX(X),Y

Description:
The effect of FIX is to remove the fractional part of its argument.

Notice the differences among FIX, CINT and INT. FIX returns the closest
integral value between the REAL value and zero. CINT converts a REAL value
to an INTEGER by substituting the closest INTEGER to the value. FIX returns
the closest integral value between the REAL value and zero. INT returns the
closest integral value between the REAL value and negative infinity. Also, CINT
actually changes the type from REAL to INTEGER while INT and FIX return
integral results without changing the type. The following table helps illustrate
these differences:

Value x CINT(x) FIX(x) INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
-2.2 -2 -2.0 -3.0
-2.6 -3 -2.0 -3.0

Porting to HP BASIC
FIX is a new HTBasic function that is not available in HP BASIC. It should not
be used in programs that must be ported back to HP BASIC.

See Also:
CINT, DROUND, FRACT, INT, PROUND, REAL

FN
Executes a user-defined function.
Syntax: FN function-name[$] [(argument [,argument...])]

where: argument = pass-by-reference | pass-by-value
pass-by-reference =
@io-path |
variable-name[$][(*)] |
string-array-element |
numeric-array-element

pass-by-value =
(variable-name[$]) |
(numeric-array-element) |
(string-array-element) |
numeric-constant |
numeric-expression
"string-literal" |
string-name$ [(subscripts)] sub-string |
string-expression

Sample: PRINT "New Value is";FNRate(Y)
Result$=FNCheck$(List$)
Pass=FNDecode(Code,(Express),@Line)
Rotate=FNTranslate(Comp(Trans1+Trans2),Table(*))

Description:
A function subprogram is defined by DEF FN and called by referencing
FNname. The supplied arguments, if any, may be used in the function's
calculations. Upon completion it returns either a string or a numeric value
depending on the type of the function name.

Calling a function subprogram changes the program context. Function
subprograms may be called recursively. If there is more than one function with
the same name the function with the lowest line number is called.

If an expression is defined and evaluated several times throughout a program,
it is convenient to define it as a function and then specify the function name
instead of the expression. A function can be used anywhere expressions are
allowed.

Function subprograms can be included in expressions involved in keyboard
calculations. For example, the return value of a function can be displayed by
typing the function name and then pressing ENTER.

The arguments specified in the function reference must be of the same type
as the parameters in the defining DEF FN. Variables passed by reference must
exactly match the DEF FN parameters. Numeric values passed by value are
changed to the type (REAL or INTEGER) of the parameter.

See Also:
CALL, DEF FN, SUB

FOR ... NEXT
Executes a loop a fixed number of times.
Syntax: FOR control-var = start TO end [STEP step]

statements
NEXT control-var

where: control-var = numeric-name
start, end and step = numeric-expressions
statements = zero, one or more program statements

Sample: 10 FOR I=1 TO 100
20 FOR X=1 TO 100
30 PRINT I,X
40 NEXT X
50 FOR J=2*PI TO 0 STEP -PI/100
. . .
80 NEXT J
90 NEXT I

Description:
The FOR ... NEXT loop is executed a fixed number of times, by incrementing
a control variable through a fixed range. The loop consists of statements
between the FOR and corresponding NEXT statement.

When the FOR statement is executed, the initial value is assigned to the
control variable. The value is then tested against the final value. If it exceeds
it (in the proper STEP direction) then the FOR loop is not executed and
control transfers to the line following the matching NEXT statement. If there is
no STEP modifier, the default step size is set to one. The step modifier can be
positive or negative. If the step modifier is zero, then the loop is infinitely
repeated and no error is generated.

When the NEXT statement is executed, the step value is added to the control
variable. If the new control value variable is larger than the end value and the
step value is positive (or if the new control variable value is smaller than the
end value and the step value is negative), the loop terminates and execution
continues with the statement following the NEXT. If the control variable has
not exceeded the end value, then control is returned to the program
statement following the corresponding FOR statement.

Jumping from outside the FOR loop into the FOR loop does not give an error
but should not be done since the control variable, end value and step value
will not be properly set. Jumping from inside the FOR loop to outside the FOR
loop is permitted.

See Also:
CALL, END, FN, GOSUB, GOTO, IF, LOOP, ON, PAUSE, REPEAT, RETURN, RUN,
SELECT, STOP, SUBEND, SUBEXIT, WAIT, WHILE

FRACT
Returns the fractional part of an argument.
Syntax: FRACT (numeric-expression)

Sample: PRINT FRACT(5/3)
Fraction = FRACT(Integer+Fraction)

Description:
The FRACT function returns a number greater than or equal to zero and less
than one. For any value of X, the formula X=INT(X)+FRACT(X) is true.

Porting to HP BASIC
HTBasic allows the FRACT of a complex value, returning the fractional part of
the real part of the complex value. HP BASIC gives error 620.

See Also:
INT

FRAME
Draws a frame around the clipping area.
Syntax: FRAME

Sample: FRAME

Description:
This command frames the clipping area using the current pen and line type.
FRAME ends with the pen up and positioned in the lower left corner of the
frame.

See Also:
AXES, CLIP, GRID, LINE TYPE, PEN, VIEWPORT

FRE
Returns the amount of free memory.
Syntax: FRE

Sample: Remaining=FRE-Needed
IF FRE<Wanted then CALL Wolf

Description:
This function returns the amount of available memory. To quickly see how
much memory is available, type FRE and press ENTER. The value will be
printed on the message line. This is the same value printed at the end of a
LIST statement or returned by the SYSTEM$("AVAILABLE MEMORY") function.

Command Line Switch
The amount of available memory to give HTBasic when it starts is set with a
command line switch. The -w (workspace) switch specifies how much memory
to set aside for your programs and data. The syntax is

-w amount[k|m]

where amount should be replaced with a number specifying the amount of
memory. Amount can optionally be followed by a "k" or an "m". If no "k" or
"m" is given, the number specifies bytes. If "k" is given, the number specifies
kilobytes and if "m" is given, the number specifies megabytes.

Under Windows and UNIX, the default workspace size is one megabyte. Under
the DOS version, the default workspace takes all available memory up to 16
megabytes. Note that the amount of free memory reported can be somewhat
less than that requested because device drivers or other memory users may
allocate some of the memory during startup.

The following example allocates two megabytes:
% htb -w 2m

Porting to HP BASIC
FRE is a new HTBasic function that is not available in HP BASIC. It should not
be used in programs that must be ported back to HP BASIC.

See Also:
LIST, SYSTEM$

GCLEAR
Clears the graphics screen.
Syntax: GCLEAR

Sample: GCLEAR

Description:
If the graphics device is a plotter, GCLEAR advances the paper. If the graphics
device is a CRT, all planes enabled with the current graphics write-mask are
cleared. If any alpha data is present in the same planes, the alpha data is re-
written.

See Also:
CLEAR SCREEN, GRAPHICS, MERGE ALPHA WITH GRAPHICS, SEPARATE ALPHA
FROM GRAPHICS

GESCAPE
Sends device-specific information to a graphic device.
Syntax: GESCAPE device-selector, code [,param(*)][;return(*)]

where: code = numeric-expression, rounded to an integer.
param and return = numeric-array.

Sample: GESCAPE Dev,Operation;Array(*)
GESCAPE 14,4
GESCAPE 2,3;Hardclip(*)
GESCAPE Plttr,Select,Send(*);Receive(*)

Description:
GESCAPE exchanges device-specific data with a graphic device. The code
parameter determines what operation will be done. The param array sends
information to the device. The return array receives information from the
device. The type, size and shape of the arrays must be appropriate for the
requested operation. Codes greater than 99 are extensions to HTBasic which
are not present in HP BASIC. Codes in the range 30 to 41 apply to the
Windows version only.

Code 1
Return the number of color map entries. The return array must be a one
dimensional INTEGER array and have at least one element. The first element
is assigned the number of color map entries.

Code 2
Return the color map values. The return array must be a two dimensional
REAL array, must have at least one row, and must have three columns. The
first row contains color information for pen 0, second row for pen 1, etc. If the
array does not have enough rows or has too many rows, no error is reported.
The first column contains the information for red, the second for green and the
third for blue. The color information ranges in value from zero to one. Color
values are multiples of 1/N, where N is the number of non-black shades
available for each color.

Code 3
Return the hard-clip values. The values are returned in plotter units or pixels.
The return array must be a one dimensional INTEGER array and must contain
at least four elements. The first four elements of the array are assigned the
values, X min, Y min, X max, Y max, respectively. For a CRT, the fifth and sixth
elements give the INTEGER array dimensions needed by the GSTORE
command to store the screen image. For example:
10 INTEGER A(1:6)
20 GESCAPE CRT,3;A(*)
30 ALLOCATE INTEGER B(1:A(5),1:A(6))
40 GSTORE B(*)

Code 4
Set normal drawing mode. Drawing in normal drawing mode with a positive
pen number sets each pixel to the pen number. Drawing in normal mode with
a negative pen number takes the value of each pixel and clears the bits
associated with the pen value. On monochrome displays, the drawing mode is

always normal so GESCAPE 4 and 5 are not supported.

Code 5
Set alternate drawing mode. Drawing in alternate mode with positive pen
numbers performs an inclusive OR on the pen value and the color-map entry
number at each pixel. Drawing in alternate mode with negative pen numbers,
performs an exclusive OR on the pen value and the color-map entry number at
each pixel. On monochrome displays, the drawing mode is always normal so
GESCAPE 4 and 5 are not supported.

Code 6
Return the graphic display masks. The return array must be a one dimensional
INTEGER array and must have at least one element. The first element is
assigned the value of the graphics write-enable mask. The second element, if
present, is assigned the value of the graphics display-enable mask. Each bit in
the mask corresponds to one of the bit planes. Bit 0 corresponds to the first
plane.

Code 7
Set the graphic display masks. The param array must be a one dimensional
INTEGER array and must have at least one element. The first element is
assigned to the graphics write-enable mask. The second element, if present, is
assigned to the graphics display-enable mask. This code is not supported by
HTBasic. Often, where operation code 7 is used, MERGE or SEPARATE ALPHA
can be used instead.

Windows
Several GESCAPE codes allow manipulation of the HTBasic window.

Code Operation
30,40 Maximize the window
31 Hide the window
32,42 Restore the window
33,43 Set window position and size
34,44 Get window position and size
35,45 Bring the window to the top
36 Get the screen size
39 Set the DUMP size (% of paper width)
41 Minimize the window

The following example shows the syntax for each of the Windows GESCAPE
codes. Note that codes that set information have a comma before the array
name while codes that get information have a semicolon.
10 INTEGER Get4(1:4),Set4(1:4),Get2(1:2),Set1(1:1)
20 DATA 90,100,500,300 ! Position of upper left corner:
 (90,100), Width = 500, Height = 300
30 READ Set4(*)
40 GESCAPE CRT,30 ! Maximize the window
50 GESCAPE CRT,31 ! Hide the window
60 GESCAPE CRT,32 ! Restore the window
70 GESCAPE CRT,33,Set4(*) ! Set the window position and size:
 X,Y,W,H
80 GESCAPE CRT,34;Get4(*) ! Get the window position and size:
 X,Y,W,H
90 GESCAPE CRT,35 ! Bring the window to the top

100 GESCAPE CRT,36;Get2(*) ! Get the screen size: W,H
101 Put1(0)=50 ! Set the DUMP size to 50%
110 GESCAPE CRT,39,Set1(*) ! Set the DUMP size (default is 100%)
120 GESCAPE CRT,41 ! Minimize the window
130 END

Codes 100 & 101
Sets the color palettes used by the HP PaintJet printer. If the code is 100, the
color table for non-COLOR MAP mode is loaded. If 101 is specified, the color
table for COLOR MAP mode is loaded. The param array must be a two
dimensional INTEGER array. It must have at least one row and must have
three columns. The first row contains color information for pen 0, second row
for pen 1, etc. If the array does not have enough rows or has too many rows,
no error is reported. The first column contains the information for red, the
second for green and the third for blue. The color information ranges in value
from 1 to 99.

Code 102
Returns the current VIEWPORT and WINDOW. The return array should be a two
dimensional REAL array with two rows and four columns. The first row is
assigned the values of the current window. The second row is assigned the
values of the current viewport. For each, the X min, X max, Y min and Y max
values are assigned to the first through fourth columns, respectively. The
following program demonstrates this capability:
10 REAL W(1,3)
20 GESCAPE CRT,102;W(*)
30 PRINT "The current window is";W(0,0),W(0,1),W(0,2),W(0,3)
40 PRINT "The current viewport is";W(1,0),W(1,1),W(1,2),W(1,3)
50 END

Code 103
Returns the current PEN and AREA PEN assignments. The return array should
be a one dimensional INTEGER array with two elements. The first element is
assigned the current PEN assignment. The second element is assigned the
current AREA PEN assignment. The following program demonstrates this
capability:
10 INTEGER P(1)
20 GESCAPE CRT,103;P(*)
30 PRINT "The current PEN is";P(0)
40 PRINT "The current AREA PEN is";P(1)
50 END

Code 104
Sets device-specific information in the PLOTTER IS device. The param array
must be a one dimensional INTEGER array. The number of elements required
depends on the device driver. The first element is the operation number and
the subsequent elements are the values associated with that operation.

For the HPGL plotter driver, code 104, operation 1 is used to enable HPGL/2
capabilities. When HPGL/2 is used, polygons are sent to the plotter for
rendering. With many plotting devices, this allows the polygons to be filled.
When generating an HPGL file for import into other programs, it is often more
desirable for the polygon to import as a single unit, rather than a series of
lines. To enable HPGL/2, use the following code. Substitute the ISC for the

HPGL plotter in place of Isc in line 40.
10 INTEGER Param(1)
20 Param(0)=1 ! HPGL Operation Number: 1 = HPGL/2 Flag
30 Param(1)=1 ! Value: 1=enable, 0=disable
40 GESCAPE Isc,104,Param(*)

Code 105
Sets device-specific information in the GRAPHICS INPUT IS device. The param
array must be a one dimensional INTEGER array. The number of elements
required depends on the device driver. The first element is the operation
number and the subsequent elements are the values associated with that
operation.

Code 106
Sets device-specific information in the DUMP DEVICE IS device. The param
array must be a one dimensional INTEGER array. The number of elements
required depends on the device driver. The first element is the operation
number and the subsequent elements are the values associated with that
operation.

For the dump drivers, code 106, operation 1 is used to specify a portion of the
screen to dump when DUMP GRAPHICS is executed. The syntax is:

GESCAPE PRT,106,param(*)

The param array must be a one dimensional INTEGER array of five elements.
The first element is the operation number. The remaining elements specify the
boundary for the DUMP. The boundary is specified in screen units:

param(1) - 1
param(2) - Beginning row
param(3) - Ending row
param(4) - Must be 0
param(5) - Must be 0

The CONFIGURE DUMP, PLOTTER IS CRT,"INTERNAL", and GRAPHICS INPUT IS
KBD,"KBD" statements reset the row parameters back to the defaults, full
screen. The CONFIGURE DUMP statement must be executed before the
GESCAPEstatement. The following program demonstrates this capability:
10 INTEGER A(1:5)
20 DUMP DEVICE IS PRT
30 CONFIGURE DUMP TO "HP-PCL"
40 A(1)=1 ! operation code, always 1
50 A(2)=100 ! begin row, screen units
60 A(3)=300 ! end row, screen units
70 A(4)=0 ! reserved, must be 0
80 A(5)=0 ! reserved, must be 0
90 GESCAPE PRT,106,A(*)
100 FRAME
110 MOVE 0,0
120 DRAW 100,100
130 DUMP GRAPHICS
140 END

See Also:

COLOR, GSEND, PLOTTER IS

GET
Loads LIF, DOS or UNIX ASCII program file into memory.
Syntax: GET file-specifier [,append [,run]]

where: append and run = line-number|line-label

Sample: GET Modprog$,250,20
GET "A:CODEFILE"
GET "Sdir/Cdir/Pdir/CorFile"
GET "GMAT.BAS"

Description:
When a GET is attempted, the first program line is read from the file and
checked for a line number. If no line number exists, an error is reported. If GET
is executed from a running program, this error can be trapped just like any
other error. If the first line of the ASCII file has a valid line number, then the
GET operation first deletes the current program and variables (except for COM
variables) and then attempts to read the ASCII program lines into memory.
Each line is syntax checked as normal. If a syntax error is found, the line is
listed to the PRINTER IS device, turned into a comment (by adding "!* " after
the line number) and then saved in memory with the other program lines.

If GET specified an append line, then the current program is deleted starting
at the append-line; the new lines are appended to the current program and
are renumbered to start at the append line number. If GET did not specify an
append line, then the program is read in without renumbering.

If GET specifies a run line (line must be in main context), execution resumes
automatically at the run line after a prerun. If GET, executed from a program,
does not specify a run line, execution resumes at the beginning of the
program. If GET, executed from the keyboard, does not specify a run line, a
RUN command must be given to start execution. If a syntax error occurred
during the GET, the error is reported and no RUN takes place. These errors
cannot be trapped.

GET has been extended to read programs in many different formats: LIF ASCII,
DOS ASCII, UNIX ASCII, Viper-I ASCII and Viper-II ASCII. In DOS and UNIX ASCII
files, carriage-returns (CR) are ignored and line-feeds (LF) are used to
terminate lines. Program lines can be terminated with LF, CR/LF or LF/CR. Files
that are terminated with CR only can only be read after an LF is added at the
end of each line.

See Also:
CONFIGURE SAVE, LOAD, RE-SAVE, SAVE

GINIT
Initializes graphics parameters to their default values.
Syntax: GINIT

Sample: GINIT

Description:
GINIT is a fast way to reset colors and other graphic options without explicitly
setting each option. GINIT also terminates any graphics input device or active
plotter. GINITchanges the PLOTTER IS back to "INTERNAL." If the previous
PLOTTER IS was a file, it is closed. GINIT changes the GRAPHICS INPUT IS back
to "KBD." The default values for graphic options are dependent on the current
device driver, but are typically:

AREA PEN 1 MOVE 0,0
CLIP OFF PDIR 0
CSIZE 5,0.6 PEN 1
LDIR 0 PIVOT 0
LINE TYPE 1,5 GESCAPE CRT,4
LORG 1

The WINDOW and VIEWPORT are both set to their initial values which are: top
= 100, bottom = 0, left = 0, right = RATIO*100. Note the value of the right
viewport setting depends on the aspect ratio of the graphic device.

See Also:
GRAPHICS INPUT IS, PLOTTER IS

GLOAD
Loads an integer array into the CRT display buffer.
Syntax: GLOAD [device-selector,] integer-array(*) [rectangle-params]

where: rectangle-params = ,width,height [,rule [,xorig, yorig]]

Sample: GLOAD Image1(*)
IF Abort THEN GLOAD Explode(*)
GLOAD CRT,Image(*),200,200,3,0,100

Description:
This command displays on the screen an image from an integer array. The
image in the array is most frequently one saved from the screen into the array
with the GSTORE command. The device-selector specifies the destination
device, which must be a bit-mapped device. The CRT is assumed if no device
selector is specified.

Two forms of the GLOAD statement are supported. The first form is
compatible with the GLOAD statement in HP BASIC and displays an image
which fills the entire screen.

The second form displays an image which fills an arbitrary sized rectangular
portion of the screen. For users porting programs from HP BASIC which use the
Bstore()/Bload() CSUBs supplied with HP BASIC, the "Porting HP BASIC
Programs to the PC" chapter of the User's Guide, presents Bstore()/Bload()
SUBs which call GSTORE and GLOAD using the integrated syntax.

Full Screen GLOAD
The size of the array necessary to store a complete screen image for each
display depends on the resolution and on the number of colors the display
supports. GESCAPE CRT,3 can be used in a program to determine the size
necessary. The following table gives the sizes for some display adaptors. The
array may be declared larger or smaller than the size given. If the array is not
large enough to contain a full screen image, GLOAD stops when all the array
contents have been transferred to the screen. If the array is too large, only
part of the array will be used. If an attempt is made to GLOAD an image to a
display that is different from the GSTORE display, unpredictable results will
occur. If the color map has different values than when the image was
GSTOREd, the colors will not match the original image.

Display Array Size
CGA Image(1:40,1:200)
MGA Image(1:40,1:400)
HGC Image(1:45,1:348)
EGA Image(1:160,1:350)
VGA Image(1:160,1:480)
SVGA16;640x480 Image(1:160,1:480)
SVGA16;800x600 Image(1:200,1:600)
SVGA16;1024x768 Image(1:256,1:768)
SVGA256;640x480 Image(1:320,1:480)
SVGA256;800x600 Image(1:400,1:600)
SVGA256;1024x768 Image(1:512,1:768)

The format of the image data within the array is documented for most

displays in the User's Guide.

Rectangular Blocks
When a Width and Height are specified after the image array, only a
rectangular block is loaded from the array onto the display. Width and Height
are specified in pixels. Optionally, a Rule can be specified which instructs
GLOAD how to combine the contents of the array with the contents of the
screen. Presently, only a value of 3 is supported, which causes the contents of
the array to totally overwrite the specified block on the display. The block will
be located with the upper left corner at the current graphic position.
Alternately, a position can be specified with the Xorigin, Yorigin parameters.
These parameters should be specified in the current WINDOW units, not pixels
or VIEWPORT units (GDUs).

For displays with 8 planes or less (256 colors or less), the image is stored with
one byte per pixel. This makes images somewhat transportable among
different displays. It also means that the number of elements necessary to
store the image is equal to Width*Height/2. If the width is even, the array
could be declared as
INTEGER Image(1:Width/2,1:Height)

For displays with more than 8 planes (256 colors), the image is stored with 3
bytes per pixel (24-bit color format).

If the array is too small, an error is given. If the array is too large, the extra
elements are ignored. If GLOADis used to display an image on a display with
less colors than the GSTORE display, the results are undefined. If the color
map is different than the color map in effect when the image was GSTOREd,
the colors will not match the original image.

Windows Version Usage Notes
Not all windows CRT drivers support GLOADGSTORE. Full screen
GLOADGSTORE uses BMP format. The contents of the array can be saved in a
file and modified by most Windows draw/paint programs. The array contains
both palette and image information.

graphics_buffer off.    If the graphics_buffer command line switch is off and
another window overlaps the HTBasic window, the overlapping portion of the
window will be included in the stored image. If the window is iconified, the
stored image will be the HTBasic icon. If part of the HTBasic window is
offscreen, only the part on screen is stored. To avoid these side-effects, use
the "-gr on" command line switch.

COLOR LOSS.    If a BMP file is loaded into an array and GLOADed to the
screen, some color information may be lost. Any color in the image that
doesn't exist in the destination palette are changed to similar colors that do
exist in the palette. With -cu ReadOnly, the destination palette consists of the
Windows static colors. With -cu Share, the destination palette is the HTBasic
COLOR MAP.

See Also:
GESCAPE, GSTORE

GOSUB
Transfers control to a subroutine.
Syntax: GOSUB subroutine

where: subroutine = line-label | line-number

Sample: GOSUB 1000
GOSUB John

Description:
A subroutine is any portion of a program context beginning with a line
mentioned in and defined in the same context, as a GOSUB statement and
ending with a RETURN statement.

When a running program encounters a GOSUB statement, it saves the current
line number and then transfers control to the specified line. Execution
continues normally until a RETURN statement is executed, at which point the
program jumps back and resumes execution at the line after the GOSUB
statement. Execution of a RETURN statement without a GOSUBwill give an
error.

If the subroutine is called by ON ERROR GOSUB, it can also include ERROR
RETURN statements. A RETURN re-executes the statement which caused the
error, while ERROR RETURN skips it.

Porting Issues
Under HTBasic, GOSUB and ALLOCATE use the same stack. Intermixing these
statements can cause changes in available memory that are different from HP
BASIC. In practice this causes no problems.

See Also:
ERROR RETURN, GOTO, ON, ON-event GOSUB, RETURN

GOTO
Transfers control to a specified line.
Syntax: GOTO { line-label | line-number }

Sample: GOTO 510
GOTO Loop

Description:
Program execution continues at the specified line. This line must be in the
current context.

See Also:
GOSUB, ON

GRAPHICS
Makes the graphics screen visible or invisible.
Syntax: GRAPHICS { ON | OFF }

Sample: GRAPHICS ON
IF No_show THEN GRAPHICS OFF

Description:
GRAPHICS ON makes the graphics screen visible; GRAPHICS OFFmakes it
invisible. The current screen driver has an effect on the execution of this
statement as explained in the following paragraphs. See PLOTTER IS for an
explanation of the screen drivers.

If the CRTA screen driver is being used, turning the GRAPHICS screen ON
turns the ALPHA screen off and vice-versa. Any time the GRAPHICS screen is
turned off, it is cleared.

If the CRTB screen driver is being used, GRAPHICS ON/OFF has no effect
when ALPHA and GRAPHICS are MERGEd. SEPARATE ALPHA FROM GRAPHICS
must be executed before this statement has any effect.

See Also:
ALPHA, GCLEAR, MERGE ALPHA WITH GRAPHICS, PLOTTER IS, SEPARATE
ALPHA FROM GRAPHICS

GRAPHICS INPUT IS
Defines the device to be used for graphic input.
Syntax: GRAPHICS INPUT IS device-selector, "driver-name [;options]"

where: driver-name = KBD | ARROW KEYS | HPGL | TABLET
options = driver options. See text for detailed information.

Sample: GRAPHICS INPUT IS KBD,"KBD"
GRAPHICS INPUT IS KBD,"ARROW KEYS"
GRAPHICS INPUT IS 705,"HPGL"
GRAPHICS INPUT IS 705,"TABLET;BIN-2,0,5000,0,5000"

Description:
This statement specifies which device and driver to use for DIGITIZE, READ
LOCATOR and SET LOCATOR statements.

The device-selector specifies the device or interface to use to communicate
with the graphic input device. This is usually KBD, an IEEE-488 device selector
or the Serial interface select code. The driver name and options, shown in
literal form in the above syntax diagram, can be specified with a string
expression. The string specifies which driver to use with the device. The
default device is KBD and the default driver is "KBD".

Graphics Input Drivers
HTBasic supports loadable graphics drivers. The first time a driver is specified
in a GRAPHICS INPUT ISstatement, the driver is loaded and used for
graphics input. When the driver is subsequently specified, it is not loaded
again, but is again used for graphics input. The following table lists the drivers
available at the time of this manual printing. (Not all drivers are available in all
versions.)

Name For These Devices
KBD Keyboard arrow keys or Mouse
ARROW KEYS Same as KBD
HPGL HPGL Plotters or Digitizers
TABLET Most available digitizing tablets

HTBasic automatically loads the "KBD" driver when it starts. Up to ten graphic
and dump drivers can be loaded at a time.

DOS Version.    Under DOS, drivers can only be loaded while in the MAIN
subprogram. It is recommended that GRAPHICS INPUT IS statements be
included in your AUTOST file to load any necessary drivers. (Drivers can also
be loaded in immediate mode when the BASIC RUNLIGHT is Idle.)

To find the driver file HTBasic takes the driver specified in the GRAPHICS
INPUT IS statement and performs several operations upon it to find the
correct file. Under the DOS version, ".D36" is appended to the name. Then the
following three locations are searched, in the specified order:

1. The directory specified by the HTB environment variable, if an HTB
environment variable exists.
2. The current directory.
3. The directory containing the HTBasic executable.

Windows Version.    Under Windows driver files can be loaded at any point. It
is recommended that GRAPHICS INPUT IS statements be included in your
AUTOST file to load any necessary drivers.

To find the driver file HTBasic takes the driver specified in the GRAPHICS
INPUT IS statement and performs several operations upon it to find the
correct file. ".DW6" is appended to the name. Then the following locations are
searched, in the specified order:

1. The directory containing the HTBasic executable.
2. The current directory.
3. The Windows system directory (such as \WINNT\SYSTEM32).
4. The Windows directory.
5. The directories listed in the PATH environment variable.

UNIX Versions.    Under UNIX, driver files are linked into the HTBasic
executable. GRAPHICS INPUT IS statements can be used anywhere, but it
isrecommended that they be included in your AUTOST file.

KBD or ARROW KEYS Driver
The keyboard (KBD) graphics input driver provides support for input of X and Y
coordinates from the keyboard arrow keys or the mouse. The KBD driver is
loaded at start up. The command to switch back to the KBD graphics input
driver from another driver is
GRAPHICS INPUT IS KBD,"KBD"
 or
GRAPHICS INPUT IS KBD,"ARROW KEYS"

The following example program shows how to set up the KBD driver and get
coordinate information from the input device.
10 PLOTTER IS CRT,"INTERNAL"
20 GRAPHICS INPUT IS KBD,"KBD"
30 TRACK CRT IS ON
40 FRAME
50 DIGITIZE X,Y,S$
60 PRINT X,Y,S$
70 END

HPGL Driver
The HPGL graphics input driver provides support for any input device that
accepts Hewlett Packard's HPGL language. Some HPGL compatible devices are
the HP 9111A and HPGL plotters.

TABLET Driver
The TABLET graphics input driver provides support for most digitizers currently
available. It usually uses either the serial port or the IEEE-488 (GPIB) bus to
communicate with the tablet. The following guidelines will help you in loading
the driver and in selecting the proper tablet configuration and data
communication options. The command to load the TABLET graphics input
driver is:

GRAPHICS INPUT IS Isc,"TABLET;[mode[,]][resolution]"

The mode option allows you to specify the method in which the tablet's data is
interpreted by the driver. If both mode and resolution options are specified,

specify the mode option first and separate the two by a comma. The following
table gives the legal values for mode:

Mode Meaning
(None) Comma separated ASCII
BIN-1 Summagraphics MM Binary Format
BIN-2 Hitachi Binary Format
BIN-3 UIOF Binary Format.

If no mode is specified, then the driver assumes the tablet is using a comma
separated, CR/LF terminated, ASCII data format. The data cannot contain any
decimal points within the string. ASCII format is preferred over binary; it tends
to be easier to setup and get working. The binary formats are explained in
greater detail in the Installing and Using manual. The resolution option is
sometimes necessary to scale X and Y values read from the tablet. The
TABLET driver assumes a default maximum resolution of 11000 units in both
the X and Y directions. This value is used to scale the digitizer coordinates to
the display WINDOW coordinates. If this value is not correct for your digitizer
or if you want to adjust for any distortion, you can change the scaling values
with the following command:

GRAPHICS INPUT IS 9,"TABLET;Xmin,Xmax,Ymin,Ymax"

Xmin and Xmax are the digitizer's X values that correspond to the display's
minimum and maximum X values respectively. Ymin and Ymax are the
digitizer's Y values that correspond to the display's minimum and maximum Y
values. Please note that these values are specified in device units.

The TABLET driver scales the digitizer X and Y coordinates into the display
WINDOW coordinates. For example, suppose the screen's WINDOW resolution
is 0-133 in the X direction and 0-100 in the Y direction and the digitizer's X
and Y resolution is 0-11000. If the digitizer returns 11000,11000 as the current
X and Y location, the DIGITIZE statement will return a value of 100,133 to the
user. If you want the X and Y values to be the same for equal movements in
the X and Y directions, specify a square WINDOW. For example:
WINDOW 0,100,0,100

The digitizer has several options that are critical to make it work properly with
HTBasic. They are as follows:

•    Handshaking Mode
•    Absolute coordinates

Some other tablet settings that are not critical, but recommended are as
follows:

•    Data transmitted only in proximity.
•    Disable Increment mode.
•    Disable leading zero's.
•    Enable RUN mode.
•    Enable Maximum report rate.

Please consult your digitizer documentation for the correct switch settings for
these options.

Communication

The TABLET and HPGL drivers usually use either the serial port or the IEEE-488
(GPIB) bus to communicate with the digitizer. This is specified by the device-
selector in the GRAPHICS INPUT IS statement. For example:
GRAPHICS INPUT IS 702,"TABLET" !GPIB Address 2
GRAPHICS INPUT IS 9,"TABLET" !First Serial Port

Communication with the tablet over the GPIB bus is straight forward. You
specify the device-selector (i.e. 702) and the control and data messages
proceed without further setup.

Communication with the tablet over the serial port is more involved because
of the many serial configuration options. The SERIAL driver defaults to 8 Data
Bits, No Parity Bit, 1 Stop Bit and a speed of 9600 Baud. Make sure that the
switches on the tablet are set to match these defaults or specify the
differences when loading the SERIAL driver.

The tablet may support either XON/XOFF handshaking or hardware
handshaking. Find out which method your tablet supports and set the SERIAL
driver to use the same handshaking. By default the SERIAL driver uses
XON/XOFF handshaking, the following line is all that is needed to set the driver
to this method.
10 LOAD BIN "SERIAL" !Loads SERIAL device driver

If you need to use hardware handshaking, you will have to set a number of
other registers within the SERIAL driver. The following program lines specify
hardware handshaking.
10 LOAD BIN "SERIAL" !Loads SERIAL device driver
20 CONTROL 9,5;0 !Use DTR and RTS
30 CONTROL 9,12;0 !Read DSR, CD and CTS
40 CONTROL 9,100;0 !Disable XON/XOFF handshaking

With some digitizers the RTS line must be held active to make the TABLET
driver work correctly, otherwise an error will occur after several successful
reads. To hold the RTS line active change program line 20 to CONTROL 9,5;2.
Make sure the tablet is set to hardware handshaking. For some tablets, this is
specified as CTS handshaking.

Porting Issues
Both HP BASIC and HTBasic do an implicit GRAPHICS INPUT IS assignment
for you if you attempt to use graphic input statements before an explicit
GRAPHICS INPUT IS statement. The difference is that HTBasic does the
implicit GRAPHICS INPUT IS as soon as HTBasic is started and HP BASIC
waits until the first graphic input statement is executed. The only known effect
of the different approach is that under HP BASIC, a SYSTEM$("GRAPHICS INPUT
IS") returns "0" until the first graphic statement is executed and HTBasic
returns the correct value anytime.

See Also:
DIGITIZE, PLOTTER IS, READ LOCATOR, SET LOCATOR, TRACK

GRID
Draws a grid pattern.
Syntax: GRID [x1 [,y1 [,x2 [,y2 [,x3 [,y3 [,minor]]]]]]]

Sample: GRID 20,20
GRID 20,20,0,0,2,2

Description:
With no arguments GRID produces a simple axes. The addition of x1 and y1
cause a grid to be drawn. The x1,y1 values specify the spacing between grid
lines.

A value of zero (the default) disables grid lines in that direction. Grid lines are
drawn across the entire soft-clip area. The values x2,y2 specify the origin of
the grid; the defaults are 0,0.

The values of x3,y3 substitute short tick marks in the place of full grid lines. A
value of n specifies that only 1 out of n divisions use a full grid line. The other
(n-1) divisions use tick marks instead. The defaults are 1,1. This disables tick
marks because full grid lines are drawn for all the divisions.

The minor value specifies the size of tick marks. The default is 2 graphic
display units.

See Also:
AXES, FRAME, LINE TYPE, PEN

GSEND
Sends commands to the PLOTTER IS device.
Syntax: GSEND string-expression

Sample: GSEND Msg$
IF Aplotter THEN GSEND "PD;"

Description:
This command sends a string to the current PLOTTER IS device. This is
sometimes useful in order to send a command to the PLOTTER IS device which
is not normally sent by the graphic statements

See Also:
GESCAPE, PLOTTER IS

GSTORE
Stores the CRT display buffer into an integer array.
Syntax: GSTORE [device-selector,] integer-array(*) [rectangle-params]

where: rectangle-params = ,width,height [,rule [,xorig, yorig]]

Sample: GSTORE Diagram(*)
IF Keep THEN GSTORE Current(*)
GSTORE CRT,Image(*),200,200,3,0,100

Description:
This command saves an image from the screen into an integer array. The
image in the array is most frequently used for re-display with the GLOAD
command. The device-selector specifies the source device, which must be a
bit-mapped device. The CRT is assumed if no device selector is specified.

Two forms of the GSTORE statement are supported. The first form is
compatible with the GSTORE statement in HP BASIC and stores an image
which fills the entire screen.

The second form stores an image which fills an arbitrary sized rectangular
portion of the screen. For users porting programs from HP BASIC which use the
Bstore()/Bload() CSUBs supplied with HP BASIC, the "Porting HP BASIC
Programs to the PC" chapter of the User's Guide, presents Bstore()/Bload()
SUBs which call GSTORE and GLOAD using the integrated syntax.

Full Screen GSTORE
The size of the array necessary to store a complete screen image for each
display depends on the resolution and on the number of colors the display
supports. GESCAPE CRT,3 can be used in a program to determine the size
necessary. The following table gives the sizes for some display adaptors. The
array may be declared larger or smaller than the size given. If the array is not
large enough to contain a full screen image, GSTORE stops when the array is
full. If the array is too large, only part of the array will be used. If an attempt is
made to GLOAD an image to a display that is different from the GSTORE
display, unpredictable results will occur. If the color map has different values
than when the image was GSTOREd, the colors will not match the original
image.

Display Array Size
CGA Image(1:40,1:200)
MGA Image(1:40,1:400)
HGC Image(1:45,1:348)
EGA Image(1:160,1:350)
VGA Image(1:160,1:480)
SVGA16;640x480 Image(1:160,1:480)
SVGA16;800x600 Image(1:200,1:600)
SVGA16;1024x768 Image(1:256,1:768)
SVGA256;640x480 Image(1:320,1:480)
SVGA256;800x600 Image(1:400,1:600)
SVGA256;1024x768 Image(1:512,1:768)

The format of the image data within the array is documented for most
displays in the User's Guide.

Rectangular Blocks
When a Width and Height are specified after the image array, only a
rectangular block is stored into the array from the display. Width and Height
are specified in pixels. Optionally, a Rule can be specified which instructs
GSTORE how to combine the contents of the array with the contents of the
screen. Presently, only a value of 3 is supported, which causes the specified
block on the display to totally overwrite the contents of the array. The block
will be located with the upper left corner at the current graphic position.
Alternately, a position can be specified with the Xorigin, Yorigin parameters.
These parameters should be specified in the current WINDOW units, not pixels
or VIEWPORT units (GDUs).

For displays with 8 planes or less (256 colors or less), the image is stored with
one byte per pixel. This makes images somewhat transportable among
different displays. It also means that the number of elements necessary to
store the image is equal to Width*Height/2. If the width is even, the array
could be declared as
INTEGER Image(1:Width/2,1:Height)

For displays with more than 8 planes (256 colors), the image is stored with 3
bytes per pixel (24-bit color format).

If the array is too small, an error is given. If the array is too large, the extra
elements are ignored. If GLOAD is used to display an image on a display with
less colors than the GSTORE display, the results are undefined. If the color
map is different than the color map in effect when the image was GSTOREd,
the colors will not match the original image.

Windows Version Usage Notes
Not all windows CRT drivers support GLOAD/GSTORE. Full screen
GLOAD/GSTORE uses BMP format. The contents of the array can be saved in a
file and modified by most Windows draw/paint programs. The array contains
both palette and image information.

graphics_buffer off.    If the graphics_buffer command line switch is off and
another window overlaps the HTBasic window, the overlapping portion of the
window will be included in the stored image. If the window is iconified, the
stored image will be the HTBasic icon. If part of the HTBasic window is
offscreen, only the part on screen is stored. To avoid these side-effects, use
the "-gr on" command line switch.

COLOR LOSS.    If a BMP file is loaded into an array and GLOADed to the
screen, some color information may be lost. Any color in the image that
doesn't exist in the destination palette are changed to similar colors that do
exist in the palette. With -cu ReadOnly, the destination palette consists of the
Windows static colors. With -cu Share, the destination palette is the HTBasic
COLOR MAP.

See Also:
GESCAPE, GLOAD

HELP
Displays Manual pages on the computer screen.
Syntax: HELP [manual-entry [second keyword]]

where: manual-entry = a keyword from the manual
second-keyword = legal secondary keyword

Sample: HELP
HELP SELECT
HELP CONFIGURE LABEL

Description:
The HELP command is used to look up material in a disk-based Reference
Manual. This disk-based manual is virtually the same as the printed Reference
Manual.

To look up a manual-entry when not in HELP mode, type:

HELP manual-entry

and press ENTER. The first page about that manual entry will be displayed. A
primary keyword may have several manual entries, describing different
combinations of the keyword followed by a secondary keyword. For example,
the primary keyword ON has several entries, such as ON, ON CYCLE, ON
DELAY, etc. The
HELP ON

command places you at the start of the first entry that talks about ON. The
HELP ON TIMEOUT

command places you at the start of the ON TIMEOUT entry.

To read the introduction at the start of the disk-based Reference Manual, give
the command HELP with no keyword.

Navigating in HELP Mode
To switch to a different manual entry while in HELP mode, type the new
keyword and press ENTER. To get another page of information, press ENTER or
CONTINUE. To exit the HELP mode, press CLR SCR. To read something that
has scrolled off the top of the screen, scroll the screen back using PREV and
NEXT or the UP and DOWN arrow keys.

Navigating in Windows Help
The Windows version of HTBasic uses the standard Windows Help system used
by most windows programs. The buttons and menu items at the top of the
help system do the following:

Use this To do this
Contents View the table of Contents
Search Search the index
Back Return to previously viewed topics
History View list of previously viewed topics
<< View the previous page of the manual
>> View the next page of the manual
Print Print the current topic
Copy Copy the current topic to the clipboard
Annotate Attach a note to the current topic
Bookmarks Place a bookmark, or go to a bookmark
Always on Top Force Help window to stay on top of other windows

Additionally, hyperlinks allow easy navigation among related topics. On most
displays, hyperlinks are underlined in green. Click on a link to show the related
topic. Click on Back to return to the previous topic.

See Also:
QUIT, EXECUTE

IDRAW
Draws a line an incremental distance.
Syntax: IDRAW x-displacement, y-displacement

where: x-displacement and y-displacement = numeric-expressions

Sample: IDRAW 0,25
IDRAW DispX,DispY
IDRAW X+10,Y+25

Description:
The pen is lowered and then moved to the position calculated from adding the
specified X and Y displacement to the current pen position. After IDRAW
executes, the logical pen position is updated and the pen is left in the down
position. IDRAW 0,0 draws a point.

If you specify a destination which is outside the clipping area, the logical
position is set to that point but the pen is not moved. Only the portion of the
vector which lies inside the clipping area is plotted.

The PIVOT statement affects the IDRAW statement.

See Also:
CLIP, DRAW, IMOVE, IPLOT, LINE TYPE, MOVE, PIVOT, PLOT, RPLOT, SHOW,
VIEWPORT, WINDOW

IF ... THEN
Performs an action if a condition is true.
Syntax: Single Line IF:

IF expression THEN action

Block IF:
IF expression THEN
      statements
[ELSE]
      statements
END IF

where: expression = numeric-expression rounded to a boolean
true if non-zero and false if zero.
action = line-number | line-label | program statement
statements = zero, one or more program statements

Sample: 10 IF J2=K THEN 1200
20 IF X=Y THEN Y=Z
30 IF A<0 THEN
40 PRINT "Below Limit!"
50 ELSE
60 CALL Convert
70 END IF

Description:
In a Single Line IF statement, if the expression is true, the action following the
THEN is taken. If the expression is false, execution continues with the
statement following the IF statement.

The following statements are not allowed in single line IF ... THEN
statements:

CASE CASE ELSE COM
DATA DEF FN DIM
ELSE END END IF
END LOOP END SELECT END WHILE
EXIT IF FNEND FOR
IF IMAGE INTEGER
LOOP NEXT OPTION BASE
REAL REM REPEAT
SELECT SUB SUBEND
UNTIL WHILE

To construct a Block IF statement, no action is allowed after the THEN on the
IF statement and the block structure must end with an END IF statement.
Only the block IF statement allows the optional ELSE statement. If the
expression is true the statements between the IF ... THEN and the ELSE are
executed. Control then continues with the statement following the END IF
statement. If the expression is false, the statements between the ELSE and
the END IF are executed.

Although HTBasic does not have an explicit ELSE IF statement, it is possible to
accomplish the same thing using a SELECT statement. See SELECT for an

example.

See Also:
CALL, END, FN, FOR, GOTO, GOSUB, LOOP, ON, PAUSE, REPEAT, RETURN, RUN,
SELECT, STOP, SUBEND, SUBEXIT, WAIT, WHILE

IMAG
Returns the imaginary part of a complex number.
Syntax: IMAG(numeric-expression)

Sample: PRINT IMAG(Z)
DRAW REAL(C),IMAG(C)

Description:
The imaginary part of a complex number is returned with IMAG and the real
part with REAL. To express the parts of a complex number in polar form, use
ABS and ARG:
PRINT "Rectangular form: Real = ";REAL(Z),"Imag =";IMAG(Z)
PRINT "Polar form: Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

See Also:
ABS, ARG, CMPLX, CONJG, REAL

IMAGE
Defines the format for data input and output.
Syntax: IMAGE image-specifier [,image-specifier...]

where: image-specifier = # | % | K | -K | H | -H | B | W | Y | + | - |
[repeat-factor] A... | [repeat-factor] X... |
[repeat-factor] /... | [repeat-factor] L... |
[repeat-factor] @... | numeric-specifier |
"string-literal"
numeric-specifier = [S|M] [left-digits] [.|R] [right-digits] [exp]
left-digits = [repeat-factor] {D|Z|*}...
right-digits = [repeat-factor] D...
exp = E | ESZ | ESZZ | ESZZZ
repeat-factor = integer-constant (1 to 32767)

Sample: IMAGE 4ZZ.DD,3X,K,/
PRINT USING """Results = "",SDDDE,3(XX,ZZ)";R,Array(*)
OUTPUT KBD USING "#,B,A"; 255,"K"
ENTER KBD USING 30;X

Description:
Executing an IMAGE statement by itself does nothing. The IMAGEstatement
is used to format data for the ENTER, OUTPUT, DISP, LABEL and PRINT USING
statements. These statements may use an IMAGE statement as their format
by specifying the line number or label name of the IMAGE statement.
Alternately, they can contain a string expression containing the image. To
embed quotation marks in a string literal, include two quotation marks.

A complex number is treated like two real numbers and should be specified
with two image specifiers. The first specifier defines how the real part should
be output/entered and the second specifier does the same for the imaginary
part.

The image specifiers in the image list are acted upon as they are encountered.
Each specifier should have a matching OUTPUT/ENTER item. Processing of the
image list stops when no matching OUTPUT/ENTER item is found. Conversely,
the image list is reused starting at the beginning to provide matches for all
remaining OUTPUT/ENTER items.

If more decimal places to the left of the decimal point are required to output a
numeric item than are specified in the image specifier, an error is generated.
If M or S are not specified, then a minus sign will take up one digit place. If the
number contains more decimal places to the right of the decimal point than
are specified in the image field, the output is rounded to fit.

If the number of characters specified in an image specifier for a string is less
than the number of characters in a string, then the remaining characters are
ignored. If the number of characters specified is greater than the number of
characters in a string then trailing blanks are used to fill out the image field.

OUTPUT, etc.
IMAGE specifiers have the following meanings in DISP, LABEL, OUTPUT and
PRINT statements:

Suppress automatic output of EOL following the last item.

% Is ignored in OUTPUT images.

K Output a number or string in default format, with a period for the radix.

-K Means the same thing as K.

H Output a number or string, default format, comma radix.

-H Means the same thing as H.

B Output a byte, like the CHR$ function. If the value is larger than 32767, 255
is sent. If the value is smaller than -32768, 0 is sent. If the value is in between,
it is rounded to an integer and the least significant byte (CINT(value) MOD
256) is sent.

W Output a word in 2's complement 16-bit integer form. If the value is larger
than 32767, 32767 is sent. If the value is smaller than -32768, -32768 is sent.
If the interface is 16-bit, the word is output in one operation (even if the BYTE
attribute was used in the I/O path). If the interface is 8-bit, the byte ordering
depends on the LSB/MSB attribute of the I/O path. If the destination is a string,
native byte ordering is always used (LSB FIRST on a PC, MSB FIRST on a Sun or
HP Workstation). If the WORD attribute was specified in the I/O path, a pad
byte will be output before the word when necessary to achieve word
alignment.

Y Means the same as W, except that word alignment is not done and the
BYTE attribute is not ignored.

+ Change the automatic output of EOL to carriage-return after the last item.

- Change the automatic output of EOL to line-feed after the last item.

M Output a minus sign if negative, a blank if positive.

S Output the sign of the number (+ or -).

D Output one numeric digit character. The leading zero's are replaced
by blanks, a minus sign is displayed on negative numbers.

Z Means the same thing as D except leading zeros are displayed.

* Means the same thing as D except leading zeros are replaced with
asterisks.

.(period) Output a decimal-point radix indicator.

R Output a comma radix indicator.

E Output an 'E', a sign character and a two-digit exponent.

ESZ Output an 'E', a sign character and a one-digit exponent.

ESZZ Output an 'E', a sign character and a two-digit exponent.

ESZZZ Output an 'E', a sign character and a three-digit exponent.

A Output an alphanumeric string character.

X Output a blank.

/ Output a carriage-return and line-feed.

L Output the current EOL sequence. The default is CR/LF.

@ Output a form-feed character.

"string-literal" Output the characters in the string literal. Remember to double the quote
marks when the image is not in an IMAGE statement.

ENTER
IMAGE specifiers have the following meanings in an ENTER statement:

Causes the statement to terminate when the last item is terminated. No
statement terminator is needed, EOI and LF are item terminators and early
termination is not allowed.

% Is the same as # except EOI causes early statement termination when it
terminates an item.

K Allows free-field entry. For numerics, entered characters are sent to the
number builder, leading non-numeric characters and blanks are ignored,
trailing non-numeric characters and characters sent with EOI true are
delimiters. For strings, entered characters are sent to the string. A CR may be
sent to the string if it is not followed by a LF. The string is terminated by CR/LF,
LF, character received with EOI true or the string dimensioned length being
filled.

-K Is like K except LF and CR/LF are not terminators.

H Is the same as K except a comma is the radix indicator and a period is a
non-numeric character.

-H Means the same as -K for strings and H for numbers.

B Demands one Byte, like the NUM function.

W Demands a 16-bit Word (2's complement integer). If the interface is 16-bit,
the word is entered in one operation (even if the BYTE attribute was used in
the I/O path). If the interface is 8-bit, the byte ordering depends on the
LSB/MSB of the I/O path. If the source is a string, native byte ordering is
always used (LSB FIRST on a PC, MSB FIRST on a Sun or HP Workstation). If
the WORD attribute was specified in the I/O path, a pad byte will be entered
before the word when necessary to achieve word alignment.

Y Is the same as W, except that word alignment is not done and the BYTE
attribute is not ignored.

+ Indicates an END (EOI) is needed with the last character of the last item to
terminate the ENTER statement. LFs are no longer statement terminators, but
are still item terminators.

- Indicates a LF is needed to terminate the ENTER statement. EOI is ignored;
other END indicators cause an error.

S Same meaning as D.

M Same meaning as D.

D Demands one character for each D or repeat count. Non-numerics are
consumed while fulfilling the count but also delimit the number. Blanks
embedded in the number are ignored.

Z Same meaning as D.

* Same meaning as D.

.(period) Same meaning as D.

R Has the same meaning as D, plus the number builder is instructed to use a
 comma as the radix indicator and a period as a non-numeric character.

E Is treated the same as 4D.

ESZ Same as 3D.

ESZZ Same as 4D.

ESZZZ Same as 5D.

A Demands one alphanumeric string character.

X Enters a character and discards it.

/ Skips all characters to the next LF. EOI is ignored.

L Ignored in ENTER.

@ Ignored in ENTER.

"string-literal" One character is skipped for each character in the string literal. Remember to
double the quote marks when the image is not in an IMAGE statement.

Porting Issues
Entering data from a string using
ENTER L$ USING "Y"

will always use the internal byte ordering of the computer. For PCs and
compatibles, the byte ordering is least significant byte (LSB) first. For Sun
SPARCstations and HP Workstations, the byte ordering is most significant byte
(MSB) first. This limitation applies to ENTER/OUTPUT with strings only. With
devices, the byte ordering can be selected in the ASSIGN statement.

See Also:
ENTER, DISP, LABEL, OUTPUT, PRINT

IMOVE
Lifts and moves the logical pen position incrementally.
Syntax: IMOVE x-displacement, y-displacement

Sample: IMOVE 25,0
IMOVE Xdisp,Ydisp
IMOVE Xx+10,Yy

Description:
The pen is lifted and then moved to the position calculated from adding the
specified X and Y displacement to the current pen position. After IMOVE
executes the logical pen position is updated and the pen is left in the up
position.

If you specify a destination which is outside the clipping area, the logical
position is set to that point but the pen is not moved.

The PIVOT statement affects the IMOVE statement.

See Also:
CLIP, DRAW, IDRAW, IPLOT, LINE TYPE, MOVE, PIVOT, PLOT, RPLOT, SHOW,
VIEWPORT, WINDOW

INDENT
Indents a program to reflect its structure.
Syntax: INDENT [start-column [,increment]]

where: start-column = integer-constant in the range 1 to screen-width - 15
increment = integer-constant in the range 0 to screen-width - 15

Sample: INDENT
INDENT 10,5

Description:
INDENT is an editing command used to insert spaces after the line numbers
and before the leading keywords of a program in order to visually show the
structure of the program. The increment value specifies how many spaces to
indent each successive structure. The start-column specifies the column to
place un-indented lines. The default start-column is seven. The default
increment value is two. The INDENT statement will move lines starting with
REM or a comment tail (!) but will not move comments appended to other
statements with a comment tail.

The following statements add a level of indentation: DEF FN, FOR, IF ... THEN,
LOOP, REPEAT, SELECT, SUB and WHILE. The following statements are printed
one indentation level to the left, but leave the indentation level unchanged:
CASE, CASE ELSE, ELSE, EXIT IF, FNEND and SUBEND. The following
statements subtract one level of indentation: END IF, END LOOP, END SELECT,
END WHILE, NEXT and UNTIL.

This statement can only be executed from the keyboard. It cannot be included
in a program.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT, FIND, MOVELINES, REN, SECURE,
XREF

INITIALIZE
Initializes mass storage media.
Syntax: INITIALIZE volume-specifier [,interleave [,option]]

where: interleave and option = numeric-expressions

Sample: INITIALIZE "A:"
INITIALIZE Disc$,2

Description:
HTBasic does not support the INITIALIZE statement, although each operating
system hosting HTBasic is capable of initializing disks. Use EXECUTE with the
appropriate operating system command. Any previous data on the mass
storage media is lost when it is initialized. Be very careful when initializing
disks. It is easy to accidentally initialize the wrong disk, such as a hard disk
with hundreds of    megabytes of valuable data.

Under DOS, use the "FORMAT" command to initialize a disk. For example, use
this command to initialize a DOS format floppy disk in drive A:
EXECUTE "FORMAT A:"

Under Windows 3.1 or Windows NT, use the File Manager to initialize a disk.
Select "Disk" and then "Format Disk...". Under SunOS 4.x, use the "fdformat"
command to initialize a diskette. Under HP-UX, use "mediainit" and "newfs".
Use your HP Series 200/300 system to initialize a new HP LIF format diskette.

RAM disks are not supported with the INITIALIZE ":MEMORY,0" command.
Many excellent RAM disk programs are available for the PC that make a RAM
disk available to all DOS programs, including HTBasic. These programs can
usually make RAM disks in conventional, expanded or extended memory. A
simple one is provided with DOS and is called VDISK.SYS or RAMDISK.SYS.

See Also:
EXECUTE, MASS STORAGE IS

INMEM
Identifies if a subprogram is loaded.
Syntax: INMEM(sub-pointer)

where: sub-pointer = string expression specifying a subprogram name

Sample: IF INMEM("Operation") THEN CALL Operation
Present = INMEM("Test")

Description:
This function returns one if the specified subprogram has been loaded into
memory and zero if it has not. The subprogram must be specified with the
initial character in uppercase and subsequent characters in lowercase.

The string expression specifying the subprogram name is called a subprogram
pointer because it "points" to the subprogram rather than explicitly naming it.
As the expression changes, the pointer points to different subprograms. The
following example illustrates how this can be useful.
10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))
50 DELSUB Method$
60 SUBEND

In HTBasic, subprogram pointers can also be used in CALL, DELSUB, LOADSUB
and XREF statements.

See Also:
CALL, DELSUB, LOADSUB, XREF

INP and INPW
Inputs a byte or word from an I/O Port.
Syntax: INP(port)

INPW(port)

where: port = numeric-expression rounded to an integer

Sample: PRINT IVAL$(INPW(&H300),16)
X=INP(Base+3)

Description:
The INP statement inputs a byte from the specified I/O port. The value
returned will be an integer in the range 0 to 255. It is equivalent to
READIO(8080,Port).

The INPW statement inputs an INTEGER from the specified I/O port. It is
equivalent to READIO(-8080,Port). These statements are useful for doing I/O
with devices, data acquisition boards, etc. for which there is no available
device driver.

Some operating systems protect I/O ports; applications are not allowed to read
or write them. Under such operating systems, these functions are not allowed.
Windows NT and UNIX are two such operating systems.

Porting to HP BASIC
INP and INPW are new HTBasic functions that are not available in HP BASIC.
They should not be used in programs that must be ported back to HP BASIC.

See Also:
OUT and OUTW, READIO, WRITEIO

INPUT
Inputs numeric or string data from the keyboard.
Syntax: INPUT ["prompt",] item [, ["prompt",] item ...]

where: prompt = string-literal
item = numeric-name [{(subscripts) | (*)}]    |
string-name$ [{[(subscripts)] '['sub-string']' |(*)}]
subscripts = subscript [,subscript...]

Sample: INPUT A,B$,C(4),D
INPUT Parray(*)
INPUT "",Str$[1;10]
INPUT "Xcoor=",X,"Ycoor=",Y
INPUT "Enter 4 numbers",Y(1),Y(2),Y(3),Y(4)

Description:
The INPUT statement gets information from the user's terminal. The optional
prompt string or a question mark (?) is displayed on the CRT display line. The
computer then waits until a reply is entered from the keyboard and either
CONTINUE or ENTER is pressed to enter a line of input. To suppress the
prompt, specify a prompt string of "".

Numeric variables can be simple scalar variables, full array variables, or
subscripted array elements. String variables can be simple string variables,
array variables, string array elements or sub-strings. An array may be entered
in row major order using the full array specifier, "(*)". Complex numbers are
entered in rectangular form, first the real part and then the imaginary part.

Leading and trailing spaces are ignored. Data values may be entered
individually or multiple values may be entered at once. If multiple values are
entered, separate each value with a comma. If too many values are entered,
the extra values are ignored. Both quoted and unquoted strings are allowed.
Commas are not allowed in unquoted strings, but may appear in quoted
strings. To embed one quotation mark in a quoted string, type in two quotation
marks at the place you wish one to appear.

Two consecutive commas cause the corresponding variable to retain its old
value. Terminating an input line with a comma or pressing CONTINUE or
ENTER without entering any data retains the original values for all remaining
variables in the list.

Live keyboard operations are not allowed while INPUT is waiting for data. ON
KBD, ON KEY and ON KNOB events are disabled during INPUT

See Also:
DISP, ENTER, LINPUT, OUTPUT, PRINT, READ

INT
Performs the greatest integer function.
Syntax: INT(numeric-expression)

Sample: J4=INT(2.7)
K=INT(-2.7)
Gif=INT(Number)
PRINT "Greatest Integer Function =";INT(Y)

Description:
INT obtains the greatest integer that is less than or equal to the value of its
argument. For positive numbers the effect is to truncate the fractional part (if
any). For negative numbers, the result is different than you might first expect.
For example, the INT of 4.9 is 4, but the INT of -4.9 is -5 since negative 5 is
the largest integer less than negative 4.9.

Notice the differences among CINT, FIX and INT. CINT converts a REAL value
to an INTEGER value by substituting the closest INTEGERto the value. FIX
returns the closest integral value between the REAL value and zero. INT
returns the closest integral value between the REAL value and negative
infinity. Also, CINT actually changes the type from REAL to INTEGER while INT
and FIX return integral results without changing the type. The following table
helps illustrate these differences:

Value x CINT(x) FIX(x) INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
-2.2 -2 -2.0 -3.0
-2.6 -3 -2.0 -3.0

See Also:
ABS, CINT, DIV, DROUND, FIX, FRACT, MOD, MODULO, PROUND, SGN

INTEGER
Declares and dimensions INTEGER variables.
Syntax: INTEGER item [,item...]

where: item = numeric-name [(bounds) [BUFFER]]
bounds = [lower-bound :] upper-bound [,bounds]
bound = integer constant

Sample: INTEGER I,J,K
INTEGER A,J,Cnt,Point,X(100)
INTEGER Iarray(-128:127,16)
INTEGER Buff(600) BUFFER

Description:
The INTEGER statement is used to declare scalar and array variables of type
integer. An INTEGER variable uses two bytes of storage space. Integer
variables conserve memory and integer operations are faster than REAL. REAL
is the default type. Bit by bit logical operations may be performed on integer
variables.

The maximum number of array dimensions is six and the lower bound must be
less than or equal to the upper bound value. Each dimension may contain a
maximum of 32,767 elements. An INTEGERvariable may be declared a buffer
by specifying the BUFFER keyword after the variable name. Buffer variables
are used with the TRANSFER statement.

Any number of INTEGER statements are allowed, anywhere in the program;
however, an INTEGER statement may not appear before an OPTION BASE
statement. Memory allocation is made during prerun and cannot be
dynamically deallocated. However, the dimensions can be changed in a
limited way by REDIM. Use ALLOCATE and DEALLOCATE for dynamic memory
allocation.

See Also:
ALLOCATE, COM, COMPLEX, DIM, OPTION BASE, REAL, REDIM, TRANSFER

IPLOT
Moves the pen relative to its present location.
Syntax: IPLOT x-displacement, y-displacement [,pen-control]

IPLOT numeric-array(*) [,FILL] [,EDGE]

Sample: IPLOT 10,0
IPLOT Xdisp,Ydisp,Pen
IPLOT Picto(*),FILL,EDGE

Description:
The IPLOT statement moves the pen from its current position by the specified
X and Y displacements. The PIVOT and PDIR statements affect the IPLOT
statement. See PLOT for a full explanation of IPLOT arguments.

See Also:
AREA, CLIP, DRAW, IDRAW, IMOVE, MOVE, PLOT, POLYLINE, POLYGON, RPLOT

IVAL
Converts a binary, octal, decimal or hexadecimal string to an INTEGER.
Syntax: IVAL(string-expression, radix)

where: radix = numeric-expression rounded to an integer

Sample: Value=IVAL(Binary$,Two)
PRINT IVAL("FA50",16)

Description:
IVAL is like VAL, in that a number in string form is converted to numeric form.
Unlike VAL, which can only convert decimal numbers, IVAL can convert
numbers in binary, octal, decimal and hexadecimal.

The string expression contains the number to be converted and the radix must
be either 2, 8, 10 or 16. The characters in the string must be legal digits in the
specified radix. For example, a binary number can only have characters "0"
and "1". Only decimal numbers are allowed to have a minus sign preceding
them.

The number expressed in the string is first converted to a 16 bit integer. If the
most significant bit is set, the result will be negative. Thus, the string must
represent a number within the range of a 16 bit signed integer. The range
restrictions are as follows:

Radix Legal Range
binary 0 through 1111111111111111
octal 0 through 177777
decimal -32768 through 32767
hexadecimal 0 through FFFF

See Also:
DVAL, DVAL$, IVAL$, VAL, VAL$

IVAL$
Converts an INTEGER to a binary, octal, decimal or hexadecimal string.
Syntax: IVAL$(number, radix)

where: number, radix = numeric-expressions rounded to integers

Sample: Hex$=IVAL$(Number,Sixteen)
PRINT IVAL$(I,8)

Description:
IVAL$ is like VAL$, in that a numeric value is converted to string form. Unlike
VAL$, which always expresses numbers in decimal form, IVAL$ can also
express numbers in binary, octal, decimal and hexadecimal.

The number must be in the range -32768 to +32767 and the radix must be
either 2, 8, 10 or 16.

The converted numbers have leading zeros as necessary to fill unused digit
positions. A minus sign is only produced for decimal numbers. The range of
numbers produced is the same as those accepted by IVAL.

See Also:
IVAL, DVAL, DVAL$, VAL, VAL$

KBD
Returns a 2, the device select code of the keyboard.
Syntax: KBD

Sample: STATUS KBD;Kbdstat
OUTPUT KBD;Clr$;

Description:
KBD is an INTEGER function which returns the constant two referring to the
keyboard interface select code. When referring to the keyboard, KBD is more
mnemonic than the constant two.

See Also:
CRT, PRT

KBD$
 Returns the contents of the ON KBD buffer.
Syntax: KBD$

Sample: PRINT KBD$;
Buff$=Buff$&KBD$
A$=KBD$

Description:
When ON KBD is enabled all keystrokes are trapped and held in the keyboard
buffer. KBD$ returns the keyboard contents and then clears it. The buffer is
also cleared by the commands: OFF KBD, ENTER KBD, INPUT, LINPUT,
SCRATCH and SCRATCH A and by the RESET key. If no key was pressed or if ON
KBD is disabled, by OFF KBD, the string length is set to zero.

The keyboard buffer can store up to 256 characters. When the buffer is full
entering more characters generates a beep and discards the character.
Function keys generate 2 bytes. The first byte is 255 and the second byte
specifies the function key.

See Also:
OFF KBD, ON KBD

KBD CMODE
Sets softkey compatibility mode.
Syntax: KBD CMODE {ON | OFF}

Sample: KBD CMODE OFF
IF Enable THEN KBD CMODE ON

Description:
KBD CMODE controls the softkey emulation mode. HTBasic emulates the ITF
keyboard softkeys by default, but can be changed to Nimitz keyboard softkey
compatibility mode by using the KBD CMODE ON statement. ITF keyboard
softkey emulation can be restored by using the KBD CMODE OFF statement.
Under DOS version of HTBasic, KBD CMODE overwrites any changes made by
CONFIGURE KEY to the softkeys.

The Nimitz keyboard is used on the 9836 system. It has ten softkeys, and the
lowest softkey is labeled k0. The softkey labels are displayed at the bottom of
the screen in two rows. Each row contains five labels; each label is 14
characters wide.

See "Using the Integrated Environment," in the Installing and Using manual for
information about keyboard layouts.

See Also:
EDIT KEY, KEY LABELS, KEY LABELS PEN, LIST KEY, LOAD KEY, OFF KEY, ON
KEY, READ KEY, SCRATCH, SET KEY, STORE KEY, USER KEYS

KBD LINE PEN
Sets the pen color for the input line.
Syntax:

KBD LINE PEN pen-number

Sample: KBD LINE PEN Pen
KBD LINE PEN 141
IF Green THEN KBD LINE PEN Greenpen

Description:
This command sets the pen color for the input line, message line, run indicator
and edit screen. KBD LINE PENoverrides any previous ALPHA PEN for these
areas of the screen. The pen-number is a numeric expression rounded to an
integer. If you are using the bit-mapped display driver legal values are from 0
to 15. (HP BASIC supports values to 255.) If you are using the non-bit-mapped
display driver, legal values are from 136 to 143. This statement is equivalent
to CONTROL CRT,17;pen-number.

See Also:
ALPHA PEN, KEY LABELS PEN, PRINT PEN

KEY LABELS
Controls the display of the softkey labels.
Syntax: KEY LABELS { ON|OFF }

Sample: KEY LABELS ON
IF Done THEN KEY LABELS OFF

Description:
The softkey labels are turned on and off. KEY LABELS ON is equivalent to
CONTROL CRT,12;2. KEY LABELS OFF is equivalent to CONTROL CRT,12;1.

See Also:
EDIT KEY, KBD CMODE, KEY LABELS PEN, LIST KEY, LOAD KEY, OFF KEY, ON
KEY, READ KEY, SCRATCH, SET KEY, STORE KEY, USER KEYS

KEY LABELS PEN
Sets the color for the softkey labels.
Syntax: KEY LABELS PEN pen-number

Sample: KEY LABELS PEN Pen
IF Crtb THEN KEY LABELS PEN 4

Description:
This statement sets the color for the softkey menu. KEY LABELS PEN
overrides any previous ALPHA PEN for the color of the softkey menu. The pen-
number is a numeric expression rounded to an integer. If you are using the bit-
mapped display driver legal values are from 0 to 15. (HP BASIC supports
values to 255.) If you are using the non-bit-mapped display driver, legal values
are from 136 to 143. This statement is equivalent to CONTROL CRT,16;pen-
number.

See Also:
ALPHA PEN, KBD LINE PEN, PRINT PEN, OFF KEY, ON KEY, SET KEY

KNOBX
Returns and resets the KNOBX counter value.
Syntax: KNOBX

Sample: Xpulse=KNOBX
IF KNOBX<0 THEN Back

Description:
During an ON KNOB sampling interval, KNOBXcounts the horizontal mouse
pulses generated. Movement of the mouse to the right gives positive counts.
Movement in the opposite direction gives negative counts. Once read the
count is cleared. If ON KNOB is not active, KNOBX returns a 0.

See Also:
KNOBY, ON KNOB

KNOBY
Returns and resets the KNOBY counter value.
Syntax: KNOBY

Sample: Ypulse=KNOBY
IF KNOBY<0 THEN Up

Description:
During an ON KNOB sampling interval, KNOBYcounts the vertical mouse
pulses generated. Upward mouse movement gives positive counts. Movement
in the opposite direction gives negative counts. Once read the count is
cleared. If ON KNOB is not active, KNOBY returns a 0.

See Also:
KNOBX, ON KNOB

LABEL
Prints text on graphic devices.
Syntax: LABEL [items [{,|;}]]

LABEL USING image [;items]

where: items = item [{,|;} item [{,|;} item...]]
item = string-expression |
string-array$(*) |
numeric-expression |
numeric-array(*)
image = line-number | line label | string-expression
See IMAGE for image syntax.

Sample: LABEL 6,Foobar$
LABEL Array(*)
LABEL USING 160;X,Y,Z
LABEL USING " ""$"",5*.DD";Money

Description:
Labels are drawn with the pen beginning at the current pen position, in the
current PEN color and LINE TYPE. Labels are clipped at the clip boundary. The
starting point for labels is affected by PIVOT. CSIZE, LORG, and LDIR affect the
output of labels, however WINDOW and SHOW do not.

Control Characters
The following control characters have a special meaning when used in LABEL
statements:

Character Meaning
CTRL-H, CHR$(8) moves pen left one character cell.
CTRL-J, CHR$(10) moves pen down one character cell.
CTRL-M, CHR$(13) moves pen left length of completed label.

In other respects, the format of output from the LABEL statement, both with
and without USING, is similar to the PRINT command. See PRINT for an
explanation of arrays, numeric and string fields and numeric and string
formats.

See Also:
CSIZE, IMAGE, LDIR, LINE TYPE, LORG, PEN, PIVOT, PRINT, SYMBOL

LDIR
Sets the angle for drawing LABELs and SYMBOLs.
Syntax: LDIR angle

Sample: LDIR 270
LDIR ACS(A)

Description:
The angle is a numeric-expression and is interpreted in the current
trigonometric mode, radians or degrees. The default is radians. A value of zero
specifies drawing along the positive x-axis. Positive values specify a counter-
clockwise direction.

See Also:
CSIZE, DEG, LABEL, LORG, PIVOT, PDIR, RAD, SYMBOL

LEN
Returns the number of characters in a string.
Syntax: LEN(string-expression)

Sample: L=LEN("Four")
IF LEN(A$)=0 THEN Null

Description:
The LEN function evaluates the string expression and returns the number of
characters in the resulting string. If there is nothing in the string, the LEN
function returns a zero value.

See Also:
CHR$, LWC$, MAXLEN, NUM, POS, REV$, RPT$, TRIM$, UPC$

LET
Assigns a value to a variable.
Syntax: [LET] numeric-name [(subscripts)] = numeric-expression

[LET] string-name$ [(subscripts)] [sub-string] = string-expression

where: subscripts = subscript [,subscript...]

Sample: LET X=4.2
LET A$="Data Value"
Carray(N+2)=Carray(N)/2
Dat$(5)[1;2]=CHR$(27)&"?"

Description:
The LET keyword is optional. The variable can be a numeric scalar or a
numeric array element, a string, a string array element or a sub-string. It can
appear on both sides of the equals sign. One assignment is performed in a
LETstatement. Any other equal signs are relational operators in expressions.

If the variable is of type INTEGER, the value of the numeric expression is
rounded to an integer. If the value is too large for an INTEGER, an error is
generated.

If the string expression length is greater than the dimensioned length of the
string, an error is generated. If the assignment is to a sub-string, the string
expression length is truncated or blank filled on the right to fit the destination
sub-string. If only the sub-string start position is given, the string expression is
assigned to the sub-string and the length of the string variable is set.

Use the MAT statement for array assignments.

See Also:
ALLOCATE, COM, DEALLOCATE, DIM, INTEGER, OPTION BASE, REAL

LEXICAL ORDER IS
Defines "alphabetical" order for string comparisons.
Syntax: LEXICAL ORDER IS option

where: option = STANDARD | ASCII | FRENCH | GERMAN |
SPANISH | SWEDISH | numeric-array(*)

Sample: LEXICAL ORDER IS ASCII
LEXICAL ORDER IS Mytable(*)

Description:
This statement defines the lexical order of characters to match the alphabets
of various languages. The LEXICAL ORDER IS statement changes rules for
collating order and upper/lower case conversions. Normally, rules for five
languages are built into HTBasic: ASCII, FRENCH, GERMAN, SPANISH, and
SWEDISH. (In HTBasic, LEXICAL ORDER IS STANDARD is the same as
LEXICAL ORDER IS ASCII).

The current LEXICAL ORDER can be determined with the SYSTEM$("LEXICAL
ORDER IS") function.

You may define your own LEXICAL ORDER rules using the LEXICAL ORDER
IS Array(*) syntax. The array is a one dimension INTEGER array of at least 257
elements which contains the rule definitions. The User's Guide explains how to
set the array elements to the define rules. In addition to collating rules,
HTBasic allows you to also specify upper/lower case conversion rules.

See Also:
LWC$, SYSTEM$, UPC$

LGT
Computes common (base 10) logarithms.
Syntax: LGT(numeric-expression)

Sample: N7=LGT(Xt*4+K)
PRINT "Log of ";Y;"=";LGT(Y)
Db=10*LGT(Watts)

Description:
The definition of common or base 10 or Briggsian logarithms is Y = LGT(X)
where X = 10^Y. LGT accepts either a COMPLEX or REAL argument and
returns a value of the same type.

COMPLEX Arguments
For COMPLEX arguments LGT(Z) is calculated (using complex arithmetic) as

LGT(Z) = LOG(Z)/LOG(10)

The domain of LGT includes all points in the complex plane except the origin.
However, intermediate values generated during the calculation of the function
can cause overflow or underflow errors for very large or small values of Z.

See Also:
EXP, LOG, SQRT

LINE TYPE
Sets the style or dash pattern and repeat length of lines.
Syntax:

LINE TYPE type [,repeat]

where: type and repeat = numeric-expressions, rounded to integers.

Sample: LINE TYPE 5
LINE TYPE Style,Repeat

Description:
At start-up the default LINE TYPE is one for solid lines. When the PLOTTER IS
device is not the CRT, the line types are device dependent. Refer to your
device documentation. The repeat factor is the GDU line length before the line
pattern is repeated.

The CRT line types are:

Value Line Type
1 solid line (default setting)
2 dot at end of line
3 loosely spaced dots
4 closely spaced dots
5 dashes
6 dash, dot
7 large dash, small dash
8 dash, dot, dot
9 solid line, short line at end
10 solid line, long line at end

Under Windows not all line types are supported. Also, most drivers ignore the
repeat value.

See Also:
DRAW, IDRAW, IPLOT, PLOT, POLYGON, POLYLINE, RECTANGLE, RPLOT

LINK
Makes a hard link to a file.
Syntax: LINK path1 TO path2 [;PURGE]

where: path1,path2 = file-specifiers

Sample: LINK "/diskless1/htb.hlp" TO "/diskless2/htb.hlp"
LINK Exists$ TO New$;PURGE

Description:
Path1 is a file specifier naming an existing file. Path2 is a file specifier naming
a new directory entry to be created. LINKatomically creates a new link
(directory entry) for the existing file and increments the link count of the file
by one. If path2 already exists, an error is given unless the PURGE option is
included.

With hard links, both files must be on the same file system. Both the old and
the new link share equal access and rights to the underlying object. The
super-user may make multiple links to a directory. Unless the caller is the
super-user, the file named by path1 must not be a directory. LINK_MAX
specifies the maximum allowed number of links to the file (see the UNIX man
page for pathconf(2V)).

Because a link merely establishes a second name for a single file, operations
on that file are effective for all the links to the file. In other words, if the file is
changed using one of the filenames, the changes are visible through all the
other filenames linked to that file. (Note that this general rule is true in all
cases under HTBasic, but is not true under HP BASIC for RE-STORE and RE-
SAVE.)

DOS Usage Notes
Under DOS, this command returns an error. LINK is only supported by
operating systems that allow multiple links (directory entries) to a single file.

Windows Usage Notes
Under windows, this command returns an error. The links supported by
Windows are not seen by Windows applications.

UNIX Usage Notes
Under UNIX, to create a new link you must have write permission in the
directory where the link will be created and search permission in all directories
in the two paths.

See Also:
COPY, CREATE, PURGE

LINPUT
Reads alphanumeric keyboard input to a string.
Syntax: LINPUT ["prompt",] string-name$ [(subscripts)]

[sub-string]

where: prompt = string-literal
subscripts = subscript [,subscripts]

Sample: LINPUT "Choice?",D$
LINPUT Iarray$(I)[4]

Description:
The LINPUT statement gets one alphanumeric data item from the keyboard
and assigns it to the string variable. LINPUT values may consist of commas,
quotation marks and leading and trailing blanks.

The CRT display line will display a prompt while the LINPUT is active. If no
prompt string is specified a question mark is displayed. If a zero length string-
literal is specified, "", the question mark is suppressed. After entry completion,
press ENTER.

During an LINPUT the ON KBD, ON KEY, and ON KNOB event definitions are
deactivated.

See Also:
DISP, ENTER, INPUT, OUTPUT, PRINT, READ

LIST
Lists the program in memory to the selected device.
Syntax: LIST [#device-selector [;begin-line [end-line]]]

where: line = line-number | line-label

Sample: LIST
LIST #702
LIST 1500,Endtest

Description:
The LIST statement outputs the program to the PRINTER IS device. If a device
selector is given the output is directed to that device. The starting and ending
program line numbers may be specified to limit the portion of the program
that is output. If the ending line number is not specified, all lines from the
start line number through the last line number are output.

After LISTing a program, the available memory in bytes is displayed on the
message line.

See Also:
GET, LIST BIN, LIST KEY, LOAD, LOADSUB, SAVE, RE-SAVE, STORE, RE-STORE

LIST BIN
Lists each BIN currently in memory.
Syntax: LIST BIN [#device-selector]

Sample: LIST BIN
LIST BIN #PRT

Description:
BIN files implement HTBasic extensions, such as device drivers. The LIST BIN
statement prints the name and version number of each BIN currently in
memory. If a device selector is given, the output is directed to that device,
otherwise it is printed on the current PRINTER IS device.

Porting to HP BASIC
LIST BIN is programmable in HTBasic, but not in HP BASIC.

See Also:
LIST, LIST KEY, LOAD BIN, SCRATCH BIN

LIST KEY
Lists the softkey macro definitions.
Syntax: LIST KEY [#device-selector]

Sample: LIST KEY

Description:
The LIST KEY statement outputs the softkey definitions to the PRINTER IS
device. If a device selector is given the output is directed to that device. Only
defined keys are listed. If the key definition contains an embedded function
key then the definition is printed in a special way. The CHR$(255) of the
function key is printed as "System Key:    ", the 2nd character of the function
key is printed and then a new line is started. After all definitions have been
printed, the available memory for softkey macros is displayed on the message
line.

See Also:
EDIT KEY, KBD CMODE, LOAD KEY, OFF KEY, ON KEY, READ KEY, SCRATCH, SET
KEY, STORE KEY, USER KEYS

LOAD
Loads a user program into memory.
Syntax: LOAD file-specifier [,run-line]

where: run-line = line-number | line-label

Sample: LOAD Story$
LOAD "Utility",200

Description:
LOAD gets a previously stored BASIC program into memory. When LOADing a
program, the current program and all variables not in COM are deleted. Each
COM block in the new program is compared to the old COM blocks in memory.
Any mismatched or unreferenced COM blocks are deleted. If LOAD is used in a
program, the newly loaded program begins running at either the first line or
the specified line. If LOAD is used as a keyboard command and the run line is
specified, the program begins running at that line or the next higher line.

PROG files are transportable between different types of computers running
HTBasic only if the computers use the same byte ordering. For example, the
DOS and Windows versions of HTBasic can share PROG files and the Sun
SPARCstation and HP Series 700 versions of HTBasic can share PROG files. But
the DOS and Windows versions can't share PROG files with the Sun or HP
versions. Again, use ASCII files to move programs between the versions.

Porting Issues
HTBasic does not support HP BASIC PROG files. To move programs between
HTBasic and HP BASIC, LOAD the PROG file, SAVE it as an ASCII file, move the
program over, GET the ASCII file and STORE it back.

See Also:
GET, LIST, LOAD BIN, LOAD KEY, LOADSUB, SAVE, RE-SAVE, STORE, RE-STORE

LOAD BIN
Loads a BIN system program file into memory.
Syntax: LOAD BIN "bin-name [;options] "

where: bin-name = file-specifier without extension
options = bin specific option string

Sample: LOAD BIN "GPIBN;BOARD AT-GPIB"
LOAD BIN "SERIAL"

Description:
The LOAD BIN statement loads a BIN system file into memory. BIN files
implement HTBasic extensions, such as device drivers. Up to 16 I/O drivers
may be loaded. The following three locations are searched for the file, in the
order given:

1. The directory specified by the HTB environment variable, if an HTB
environment variable exists.
2. The current directory.
3. The directory containing the HTBasic executable.

Some BIN files allow options to be specified. The legal options are different for
each device driver; consult the device driver documentation to determine the
legal options. Documentation for the standard device drivers included with
HTBasic can be found in the Installing and Using manual. Documentation for
separately available device drivers comes with the driver.

If an error occurs while loading a device driver, it will not be loaded. Often,
when an error is detected, more explicit diagnostic information can be
obtained by pressing the PRT ALL key to turn print-all mode on (see PRINTALL
IS) and retrying the statement LOAD BIN

Under HTBasic, STORE SYSTEM is not an alternative; you must use LOAD BIN

DOS Usage Notes
LOAD BIN is only allowed in the MAIN program or from the keyboard while
HTBasic is in the Idle state. Typically, you should place all your LOAD BIN
statements in your AUTOST file so that the necessary drivers are loaded each
time you start HTBasic.

Windows Version Usage Notes
The search locations for the windows version are:

1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory (such as \WINNT\SYSTEM32).
4. The Windows directory.
5. The directories listed in the PATH environment variable.

See Also:
LIST BIN, SCRATCH BIN, STORE SYSTEM

LOAD KEY
Loads softkey macro definitions into memory.
Syntax: LOAD KEY [file-specifier]

Sample: LOAD KEY "DEF"

Description:
The LOAD KEY statement loads softkey macro definitions into memory from a
file. Executing LOAD KEY without the file specifier resets the softkey
definitions to their start-up defaults.

See Also:
EDIT KEY, KBD CMODE, KEY LABELS, KEY LABELS PEN, LIST KEY, OFF KEY, ON
KEY, READ KEY, SCRATCH, SET KEY, STORE KEY, USER KEYS

LOADSUB
Loads a BASIC subprogram into memory.
Syntax: LOADSUB [context] FROM file-specifier

where: context = ALL | subprogram-name | FN function-name[$] |
string-expression

Sample: LOADSUB Peek FROM "PEEK.COM"
LOADSUB FROM "Testfile"
LOADSUB FNSearch$ FROM "Sarfile"
LOADSUB ALL FROM Myfile$
LOADSUB Subptr$ FROM "ROUTINES.LIB"

Description:
The LOADSUB statement loads subprograms at the end of the current
program. It renumbers the incoming subprogram lines. After loading a
subprogram it also preruns the subprogram to check for COM block
mismatches.

If ALL is specified, all subprograms in the file are loaded into memory. If a
subprogram name is specified (either explicitly or in a string expression), only
that subprogram is loaded into memory. These forms of LOADSUB are
programmable.

LOADSUB FROM (no context specified) looks through a program and loads all
subprogram references not yet in memory. The newly loaded subprograms are
also looked through and any additional subprogram references not yet in
memory are located and loaded into memory. After LOADSUB FROMhas
executed, if any subprogram references were not loaded into memory, an
error is generated along with a listing of the subprogram names. LOADSUB
FROM is not programmable.

Subprogram Pointer
If a string expression specifies the subprogram name in the LOADSUB
statement, the string expression is called a subprogram pointer because it
"points" to the subprogram rather than explicitly naming it. As the expression
changes, the pointer points to different subprograms. The following example
illustrates how this can be useful.
10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))
50 DELSUB Method$
60 SUBEND

The subprogram pointer must be specified with the initial character in
uppercase and subsequent characters in lowercase. Subprogram pointers can
also be used in CALL, DELSUB, INMEM, and XREF statements.

Porting to HP BASIC
The use of subprogram pointers in LOADSUB is a new HTBasic feature that is
not available in HP BASIC. It should not be used in programs that must be
ported back to HP BASIC.

See Also:
CALL, DELSUB, INMEM, RE-STORE, STORE

LOCAL
Returns specified IEEE-488 devices to their local state.
Syntax: LOCAL {@io-path | device-selector}

Sample: LOCAL @Dvm
LOCAL Isc
LOCAL 728

Description:
If a primary device address is specified, a Go To Local (GTL) message is sent to
all listeners and LOCAL LOCKOUT is not canceled. If only an interface select
code is specified, all devices on the bus are returned to the local state and
LOCAL LOCKOUT is canceled.

If a primary device address is specified and the computer is the Active
Controller, the bus activity is: ATN, MTA, UNL, LAG, GTL.

If the computer is not the Active Controller but is the System Controller and
just an interface select code is specified, the REN line is set false. If it is also
the Active Controller the ATN and REN lines are both set false.

When the computer is not the System Controller but is the active controller,
the bus activity for an Interface Select Code is to set the ATN line and send a
GTL message.

See Also:
ABORT , CLEAR, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL,
TRIGGER

LOCAL LOCKOUT
Sends the IEEE-488 LLO message.
Syntax: LOCAL LOCKOUT {@io-path | interface-select-code}

Sample: LOCAL LOCKOUT 7
LOCAL LOCKOUT Isc
LOCAL LOCKOUT @Gpib

Description:
The local lockout message LLO is sent over the IEEE-488 preventing front
panel control of devices in the remote state.

If the computer is not the active controller or a primary device address is
specified, an error is generated. If an I/O path is specified, it must refer to the
IEEE-488 interface.

See Also:
ABORT, CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND,
SPOLL, TRIGGER

LOCK
Secures a file for exclusive access.
Syntax: LOCK @io-path; CONDITIONAL return

where: io-path = name assigned to a file.
return = numeric-name

Sample: LOCK @Proprietary;CONDITIONAL Result
IF Secure THEN LOCK @Keyfile;CONDITIONAL Ok

Description:
This command attempts to LOCK a file to prevent other users from accessing
the file while you are using it. The return value is zero if the file is successfully
LOCKed and non-zero if the LOCK fails. The value returned is an error
number, indicating why the LOCK failed. An ASSIGN @Path TO * will UNLOCK
and then close the file.

File locking capabilities depend on the operating system HTBasic is running
on. If the operating system does not support it, the result value will always
indicate failure. Some operating systems require the LOCK request when the
file is opened. On such a system, the file will be closed and re-opened with the
LOCK

A file can have multiple locks on it. The file remains locked until a
corresponding number of UNLOCK statements have been executed. LOCKing
a file should be a temporary action of short duration so that fair access to the
file is provided to all network users.

DOS or Windows Usage Notes
Under DOS or Windows, SHARE may need to be loaded in order to share, lock
and unlock files. Consult the manufacturer's documentation for your system. If
SHARE is necessary, but not currently installed, the LOCK will fail with an error
number 1.

HP-UX Usage Notes
Under HP-UX, a file must have the "set-group-ID on execution" access mode
set before record locking is enforced on that file. HTBasic sets this mode when
it creates a file. To set this mode on an existing file, use the chmod command
in an HP-UX shell:
chmod g+s filename

If the proper mode is not set, HP-UX uses advisory locks on the file. An
advisory lock can be respected by another program, but is not enforced by HP-
UX. The LOCK statement will fail if another process has the file locked, but the
file can still be modified. Thus, programs must cooperate in order for advisory
locking to be effective.

SunOS Usage Notes
Under SunOS, a file must have the "group execute" access mode not set and
the "set-group-ID on execution" access mode set before record locking is
enforced on that file. HTBasic sets this mode when it creates a file. To set this
mode on an existing file, use the chmod command in a SunOS shell:
chmod g+s filename

If the proper mode is not set, SunOS uses advisory locks on the file. An
advisory lock can be respected by another program, but is not enforced by
SunOS. The LOCK statement will fail if another process has the file locked, but
the file can still be modified. Thus, programs must cooperate in order for
advisory locking to be effective.

See Also:
ASSIGN, UNLOCK

LOG
Computes natural (base "e") logarithms.
Syntax: LOG(numeric-expression)

Sample: LN=LOG(Dt4)
PRINT "LN(";X;") =";LOG(X)

Description:
The definition of natural or base "e" or Naperian logarithms is Y = LOG(X),
where X = EXP(Y). "e" is an irrational number whose value is approximately
2.718 281 828 459 05.

COMPLEX Arguments
LOG accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the real and imaginary parts of LOG(Z)
are calculated (using real arithmetic) as

REAL(LOG(Z)) = LOG(ABS(Z))
IMAG(LOG(Z)) = ARG(Z)

which returns an imaginary part in the range -PI to PI, regardless of the
current trigonometric mode. The domain of LOG includes all points in the
complex plane except the origin. However, intermediate values generated
during the calculation of the function can cause over or underflow errors for
very large or small values of Z.

See Also:
EXP, LGT, SQRT

LOOP
Defines a series of statements to be executed repeatedly.
Syntax: LOOP

statements
[EXIT IF boolean-expression]
statements
END LOOP

where: statements = zero, one or more program statements

Sample: 100 LOOP
. . .
170 EXIT IF J=5 OR A$>B$
. . .
180 END LOOP

Description:
When control reaches the END LOOP statement, it is transferred back to the
statement following the LOOP statement until an EXIT IF statement
evaluates non-zero. There may be any number of EXIT IF statements in the
LOOP. Branching into a LOOP is legal.

See Also:
CALL, END, FN, FOR, GOTO, GOSUB, IF, ON, PAUSE, REPEAT, RETURN, RUN,
SELECT, STOP, SUBEND, SUBEXIT, WAIT, WHILE

LORG
Specifies the position of a LABEL relative to the current position.
Syntax: LORG numeric-expression

Sample: LORG Origin
LORG 2

Description:
The LORG statement specifies the relative position of the LABEL with respect
to the current pen position. The argument is rounded to an integer and has a
range of one through nine. The default LORG origin is one. The values are as
follows:

Left Values Middle Values Right Values
3 - left-top 6 - middle-top 9 - right-top
2 - left-center 5 - middle-center 8 - right-center
1 - left-bottom 4 - middle-bottom 7 - right-bottom

If the string length is odd, the horizontal center of the string is the center of
the middle character.

See Also:
CSIZE, IMAGE, LABEL, LDIR, LINE TYPE, PDIR, PEN, PIVOT, PRINT, SYMBOL

LWC$
 Converts characters in a string to lowercase.
Syntax: LWC$(string-expression)

Sample: A$=LWC(B$)
PRINT LWC$(Answer$)

Description:
The upper-case to lower-case correspondence is affected by LEXICAL ORDER
IS. If a user-defined table is used with LEXICAL ORDER IS and the optional
upper and lowercase conversion rules are not specified, the uppercase to
lowercase transform is determined by the STANDARD lexical order.

See Also:
CHR$, LEN, LEXICAL ORDER IS, MAXLEN, NUM, POS, REV$, RPT$, TRIM$, UPC$,
VAL, VAL$

MASS STORAGE IS
Assigns the current mass storage device and directory.
Syntax: MASS STORAGE IS path-specifier

MSI path-specifier

Sample: MASS STORAGE IS Volspec$&Dir_path$
MSI "A:\DIR1\DIR2\MYDIR"
MSI "/usr/bin" CD "/usr/bin"

Description:
The current MASS STORAGE IS includes both the device, and the current
directory. This current directory is searched first to find any specified files. You
may change the current device and directory with the MSI command. You may
determine the current device and directory with the SYSTEM$("MSI") function.

MASS STORAGE IS may be abbreviated MSI or CD.

See Also:
CAT, CONFIGURE MSI, COPY, CREATE, INITIALIZE, PRINT LABEL, PROTECT,
PURGE, READ LABEL, RENAME, SYSTEM$("MSI")

MAT
Specifies an array operation.
Syntax: MAT string-array$ = string-array$ | (string-expression)

MAT numeric-array = numeric-array [operator numeric-array]
MAT numeric-array = (numeric-expression) [operator numeric-array]
MAT numeric-array = numeric-array operator (numeric-expression)
MAT vector = RSUM(matrix) | CSUM(matrix)
MAT matrix = INV(matrix) | TRN(matrix) | IDN
MAT array-name [sub-array] = array-name [sub-array]

COMPLEX Extensions:
MAT array-name = REAL(array-name)
MAT array-name = IMAG(array-name)
MAT array-name = ARG(array-name)
MAT array-name = ABS(array-name)
MAT array-name = CONJG(array-name)
MAT array-name = CMPLX(array-name,array-name)

where: operator = + | - | . | / | < | <= | = | <> | >= | > | *
sub-array = ({range | subscript} [, {range | subscript}...])
range = * | lower-bound : upper-bound

Sample: MAT A=A*(Pny*6)
MAT A=B+C
MAT A=C>=(1)
MAT A=(4)
MAT A=CSUM(C)
MAT A=RSUM(D)
MAT A=IDN
MAT A=INV(B)
MAT Destination(3,*,*)=Source(*,2,*)

Description:
MAT initializes and performs operations on string and numeric arrays. MAT
operations can copy a string or numeric expression or array into an array, add
or subtract an array or numeric expression to an array or numeric expression,
multiply or divide an array or numeric expression by an array or numeric
expression, compare arrays and numeric expressions or perform an identity
(IDN), inverse (INV), sum (CSUM or RSUM) or transpose (TRN) of rows and
columns of a matrix. MAT operations can also be used to assign a sub-array to
another array or subarray.

The REAL, IMAG, ARG, ABS, CONJG and CMPLX functions operate the same
with arrays as with scalar numbers.

Size and Shape Requirements
In general, a matrix must meet certain size and shape requirements for each
matrix operation. If it does not, in certain operations it makes sense to
automatically redimension it. If it can't be redimensioned, an error is given.

Sub-array assignments require that the number of ranges specified in the
source match the number of ranges specified in the destination. If a complete
array is specified, the number of ranges equals the rank of the array. In
corresponding ranges of the source and destination, the number of elements

must be the same. The following examples will help you visualize these rules:
10 DIM X(1:3),Y(1:10)
20 DIM D(3,4,5),S(4,2,5)
30 MAT X=Y(2:4) ! One range, three elements
40 MAT D(3,*,*)=S(*,2,*) ! Range 1 has 5 elements,2 has 6
50 MAT Y(1:6)=S(0,0,*) ! One range, 6 elements

For the list of operators above, the target array must be the same size and
shape as the source array because numeric operations are performed one
array element at a time and the result is returned to the corresponding
element in the target array.

Matrix Multiply
The asterisk "*" operator performs a matrix multiplication when it is between
two matrixes. If it is between an array and a numeric expression each element
of the array is multiplied by the value of the expression. The period "."
operator is used between two arrays to perform an element by element
multiply. Vectors can be used in a matrix multiplication as if they were two-
dimensional matrices. If used as the first matrix, a vector is treated as a 1 by
N matrix. If used as the second matrix, a vector is treated as an N by 1 matrix.

Sum Columns, Rows
The CSUM and RSUM matrix functions sum the columns and rows,
respectively, of a matrix and return the result into a target vector array.

Identity
The IDN matrix function initializes a square matrix to an identity matrix. An
identity matrix has zeros in all elements but the diagonal elements, which
have the value one.

Invert
The INV matrix function returns the inverse of a square matrix. It also
calculates the DET value. If the matrix has no inverse, the DET is set to zero,
but no error is returned. If the DET is very small in relation to values of the
array, numerical methods for inverting the array fail. Thus, the DET should be
checked after using INV.

Transpose
The TRN matrix function returns the transpose of the source matrix by
exchanging rows for columns and columns for rows.

See Also:
DET, DIM, DOT, MAT REORDER, MAT SEARCH, MAT SORT, REDIM, SUM

MAT REORDER
Reorders array elements by a supplied subscript list.
Syntax: MAT REORDER array-name[$] BY vector [, subscript]

Sample: MAT REORDER Array BY Vector,2
MAT REORDER Elements$ BY New

Description:
The array is reordered according to the values in the vector. The optional
subscript is rounded to an integer and specifies which subscript is to be
reordered. If it is not specified it is assumed to be one.

The vector must be a one dimensional array which is the same size as the
specified subscript. It contains integers specifying valid subscript values with
no duplicate values. The MAT SORT statement may be used to generate vector
values.

COMPLEX Arrays
MAT REORDER can reorder a complex array, but a reorder vector can not be
complex.

See Also:
MAT, MAT SEARCH, MAT SORT, REDIM

MAT SEARCH
Searches an array for user specified conditions.
Syntax: MAT SEARCH numeric-array [num-key], rule; return [,start]

MAT SEARCH string-array$ [str-key], rule; return [,start]

where: num-key = [search-subscripts] [DES]
str-key = [search-subscripts [sub-string]] [DES]
search-subscripts = ({subscript|*} [,...])
The '*' must appear only once.
rule = [#]LOC ([relational] value) | LOC MAX | LOC MIN | MIN | MAX
relational =    < | <= | = | <> | => | >
return = variable-name
start = numeric-expression
value = string-or-numeric-expression

Sample: MAT SEARCH Vector,#LOC(<>PI);Not_pi
MAT SEARCH Temperature,LOC MAX;Hottest
MAT SEARCH Students,LOC(<.33);Flunk,4
MAT SEARCH Titles$(*,2,3) DES,MAX;Last_book$
MAT SEARCH Array$(*), LOC(=Target$);I

Description:
A numeric or string array is searched for the specified condition and the result
is returned in the return variable. The keyword DES specifies descending
search order. The optional start value specifies the starting subscript. If not
specified, searching begins with the first element for ascending searches and
the last element for descending searches. The "rule" specifies the search rules
to use and what to return:

Rule Meaning
LOC Subscript of first element satisfying operator
#LOC Count the number of elements satisfying operator
LOC MAX Subscript of maximum value
LOC MIN Subscript of minimum value
MAX Find and return the maximum value
MIN Find and return the minimum value

COMPLEX Arrays
MAT SEARCH can search an array, but since the concept of linear ordering
does not apply to the complex plane, greater than, less than, MIN and MAX
operations are not allowed.

See Also:
MAT, MAT REORDER, MAT SORT, REDIM

MAT SORT
Sorts string or numeric array data.
Syntax: MAT SORT numeric-array numeric-keys [TO vector]

MAT SORT string-array$ string-keys [TO vector]

where: numeric-keys = (key-subscripts) [DES] [,numeric-keys]
key-subscripts = {subscript | *} [,key-subscripts]
The '*' must appear only once.
string-keys = string-key [,string-keys]
string-key = (key-subscripts) [sub-string] [DES]

Sample: MAT SORT A$(*)
MAT SORT Array(Tag,*)
MAT SORT Vals(1,*,3),(2,*,5) DES
MAT SORT String$(*,2)[1;3] TO Order

Description:
MAT SORT sorts a numeric or string array along one dimension. The direction
of the sort is in ascending order unless the DES keyword follows the key
specifier. For multi-dimensioned arrays, entire rows, columns, etc. are
swapped in the ordering process according to the values in the sort key
specifier.

The sort key specifier is made up of subscript values and an asterisk "*". The
asterisk specifies the dimension to be sorted. The subscript values specify
which array elements in that subscript are to be used during the sort. Sub-
strings may be specified for string arrays.

The optional "TO vector" syntax stores the new order in a vector, leaving the
original array unchanged. The vector is redimensioned to the size of the array
dimension sorted. It is compatible with the MAT REORDER statement. It is best
if the vector is an INTEGER array.

COMPLEX Arrays
MAT SORT can not sort a complex array since the concept of linear ordering
does not apply to the complex plane. A complex array can be sorted indirectly
by creating a REORDER vector that sorts the complex array according to some
linear property of complex numbers, such as magnitude. In the following
example, lines 90 to 110 sort the complex array C(*) according to magnitude.
A similar technique can be used for other sorting criteria.
 10 COMPLEX C(1:8)
 20 REAL Abs(1:8)
 30 INTEGER I,Order(1:8)
 40 FOR I=1 TO 8 !Create array to sort
 50 C(I)=CMPLX(INT(RND*10),INT(RND*10))
 60 NEXT I
 70 PRINT USING "2(K,2X),/";C(*)
 80 ! Now sort by magnitude
 90 MAT Abs=ABS(C)
100 MAT SORT Abs(*) TO Order
110 MAT REORDER C BY Order
120 ! Print the result
130 FOR I=1 TO 8
140 PRINT C(I),ABS(C(I))

150 NEXT I
160 END

See Also:
MAT, MAT REORDER, MAT SEARCH, REDIM

MAX
Returns the maximum value of a list of expressions.
Syntax: MAX(item [,item...])

where: item = numeric-expression | numeric-array(*)

Sample: I=MAX(4,X,Y)
Largest=MAX(numerals(*))
PRINT MAX(First,20,Last/3)
Cost=MAX(Win1,Win2,Lose1)

Description:
The MAX numeric function returns the largest value of all the values in the
argument list. If an item is an array it is treated as if each element in the array
were an item.

See Also:
MIN

MAXLEN
Gets maximum declared length of a string variable.
Syntax: MAXLEN(string-name$ [(*)|(subscripts)])

Sample: MAXLEN(Newstring$)
Rows=MAXLEN(Alpharray$(*))

Description:
MAXLEN returns the declared length of the string variable as declared in an
ALLOCATE, COM or DIM statement or an implicitly declared string variable.

See Also:
BASE, DIM, RANK, SIZE

MAXREAL
Returns the largest positive REAL number.
Syntax: MAXREAL

Sample: IF X>MAXREAL/Y THEN GOTO Overflow

Description:
MAXREAL returns the largest positive REAL number that the computer can
represent in its floating point number system. On computer systems that use
the IEEE floating point number standard, the largest positive REAL number is
approximately 1.797 693 134 862 32E+308.

See Also:
MINREAL

MERGE ALPHA WITH GRAPHICS
Enables all planes for Alpha and Graphics.
Syntax: MERGE ALPHA [WITH GRAPHICS]

Sample: IF Conf=4 THEN MERGE ALPHA WITH GRAPHICS

Description:
This statement can only be used with the CRTB screen driver (see PLOTTER
IS). It is the opposite of SEPARATE ALPHA FROM GRAPHICS. When merged, all
bit-planes are used by both alpha and graphics. This means that alpha text is
converted to graphic pixels and written into the graphic planes, overwriting
any graphics data that might be present. Also, scrolling alpha text will scroll
graphics, dumping either will dump both and the full range of colors are
available for both alpha text and graphic output. MERGE ALPHA is the
default mode for a CRTB display and the Windows version.

Because this statement turns off COLOR MAP mode, it should be executed
before any PLOTTER IS CRT, "INTERNAL";COLOR MAP statement.

See Also:
ALPHA, GRAPHICS, PLOTTER IS, SEPARATE ALPHA

MIN
Returns the minimum value of a list of expressions.
Syntax: MIN(item)

where: item = numeric-expression | numeric-array(*)

Sample: I=MIN(4,3)
Small=MIN(Numerals(*))
PRINT MIN(First,20,Last/3)

Description:
The MIN numeric function returns the smallest value of all the items in the
argument list. An array is treated as if all its elements were listed as items.

See Also:
MAX

MINREAL
Returns the smallest positive REAL number.
Syntax: MINREAL

Sample: IF X<MINREAL*Y THEN GOTO Underflow

Description:
MINREAL returns the smallest positive REAL number that the computer can
represent in its floating point number system. On computer systems that use
the IEEE floating point number standard, the smallest positive REAL number is
approximately 2.225 073 858 507 24E-308.

See Also:
MAXREAL

MOD
Returns remainder after integer division.
Syntax: dividend MOD divisor

Sample: I=D MOD 16
PRINT "Inches"=";Length MOD 12

Description:
X MOD Y is the remainder from a division which produces an integral quotient
and is defined as X - Y * (X DIV Y). If one or both of the operands are REAL, the
result is REAL; otherwise the result is INTEGER. The difference between MOD
and MODULO is explained in MODULO

See Also:
DIV, INT, MODULO

MODULO
Returns the true mathematical modulus.
Syntax: dividend MODULO modulus

Sample: I=D MODULO 16
PRINT "Inches" =";Length MODULO 12
R=12 MODULO -5

Description:
X MODULO Y is defined as X - Y * INT(X/Y), where INT(X/Y) is the greatest
integer less than or equal to X/Y. MODULO and MOD give the same result if
both X and Y have the same sign, but differ if X and Y do not have the same
sign. It can be seen why this is so from the definitions. (X DIV Y) divides and
then converts to integer by truncation toward zero. INT(X/Y) divides and then
converts to integer by truncation toward negative infinity.

See Also:
INT, MOD

MOVE
Moves the logical and physical pens to a new position.
Syntax: MOVE x-position, y-position

where: x-position, y-position = numeric-expressions

Sample: MOVE 25,80
MOVE Newx,Newy

Description:
The pen is raised before being moved to the specified position. If both the
current logical position and the specified position are outside the clip area the
logical position is updated but no physical pen movement is made.

The PIVOT statement affects the MOVE statement.

See Also:
CLIP, DRAW, IDRAW, IMOVE, IPLOT, LINE TYPE, PIVOT, PLOT, RPLOT, SHOW,
VIEWPORT, WINDOW

MOVELINES
Moves program lines from one location to another.
Syntax: MOVELINES start [,end] TO target

where: start, end and target = line-number | line-label

Sample: MOVELINES 600 TO 1500
MOVELINES 500,1200 TO 4100
MOVELINES First,Second TO Target

Description:
MOVELINES moves a block of lines to a new location. This differs from the
COPYLINES statement in that COPYLINES makes a copy of the original program
portion. If no ending line is specified, only one line is moved. The target line
cannot be in the range specified by start and end. If start doesn't exist, the
line immediately after that line number is used. If end doesn't exist, the line
immediately before that line number is used. If a non-existent line label is
specified, an error will be reported. If the arguments specify a destination line
number or program section that already exists, the old section will be
renumbered to make room for the new program lines.

Line numbers and labels are renumbered and updated if needed. MOVELINES
may not move lines containing a SUB program or DEF FN definition unless the
new line number is greater than any existing line number; otherwise an error
is issued because SUB or DEF FN must follow all previous lines. If an error
occurs during a MOVELINES, the copy is terminated and the program is left
partially changed. This command can only be executed from the keyboard. It
cannot be included in a program.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT, FIND, INDENT, REN, SECURE, XREF

NOT
Returns the logical negation of an expression.
Syntax: NOT numeric-expression

Sample: A=NOT 1
A=NOT B
IF NOT File_input THEN PRINT Prompt$

Description:
If the argument is zero, NOT returns a one. If the argument is non-zero,
NOTreturns a zero.

See Also:
AND, OR, EXOR

NPAR
Returns number of parameters passed to a subprogram.
Syntax: NPAR

Sample: IF NPAR>5 THEN More
Global=NPAR-3

Description:
NPAR is useful in subprograms with OPTIONAL parameters. NPAR can be
used to determine which parameters were present in the calling argument list.
An attempt to use a parameter which was not present results in an error. In
the main program, NPAR returns a zero.

See Also:
CALL, DEF FN, FN, SUB

NUM
Returns decimal ASCII equivalent of the first character in a string.
Syntax: NUM(string-expression)

Sample: A=NUM(B$)
A=NUM("0")
N=NUM(Alph$)
B=NUM(B$[V])/16

Description:
The range of the returned values is 0 through 255.

See Also:
CHR$, LWC$, REV$, RPT$, POS, TRIM$, UPC$, VAL, VAL$

OFF CYCLE
Cancels event branches defined by ON CYCLE.
Syntax: OFF CYCLE

Sample: OFF CYCLE
IF Complete THEN OFF CYCLE

Description:
Any CYCLE events that have been logged but not yet serviced are canceled.

Execution of an OFF CYCLEstatement within a subprogram will disable the ON
CYCLE definition within the context of the subprogram, but when control is
returned to the calling program the ON CYCLE definition is re-enabled.

See Also:
ENABLE, DISABLE, ON CYCLE, SYSTEM PRIORITY

OFF DELAY
Cancels event branches defined by ON DELAY.
Syntax: OFF DELAY

Sample: OFF DELAY
IF Finis THEN OFF DELAY

Description:
Any DELAY events that have been logged but not yet serviced are canceled.

Execution of an OFF DELAYstatement within a subprogram will disable the
ON DELAY definition within the context of the subprogram, but when control is
returned to the calling program the ON DELAY definition is re-enabled.

See Also:
ENABLE, DISABLE, ON DELAY, SYSTEM PRIORITY

OFF END
Cancels event branches defined by ON END.
Syntax: OFF END @io-path

where: io-path = name assigned to a data file

Sample: OFF END @File
IF Finis THEN OFF END @Input

Description:
Execution of an OFF END statement within a subprogram will disable the ON
END definition within the context of the subprogram, but when control is
returned to the calling program the ON END definition is re-enabled.

End-of-file and end-of-record errors will be reported if no ON END definition is
active.

See Also:
ENABLE, DISABLE, ON END, SYSTEM PRIORITY

OFF EOR
Cancels event branches defined by ON EOR.
Syntax: OFF EOR @non-buf-io-path

where: non-buf-io-path = io-path used in the ON EOR statement

Sample: OFF EOR @Dev
IF Finis THEN OFF EOR @File

Description:
Any End-of-Record (EOR) events that have been logged but not yet serviced,
are canceled. Executing OFF EOR within a subprogram disables the ON EOR
definition within that subprogram context. When control is returned to the
calling program, any pre-existent ON EOR definition is re-enabled.

See Also:
ABORTIO, ON EOR, ON EOT, TRANSFER, WAIT

OFF EOT
Cancels event branches defined by ON EOT.
Syntax: OFF EOT @non-buf-io-path

where: non-buf-io-path = io-path used in the ON EOT statement

Sample: OFF EOT @Dev
IF Finis THEN OFF EOT @File

Description:
Any End-of-Transfer (EOT) events that have been logged but not yet serviced,
are canceled. Executing OFF EOT within a subprogram disables the ON EOT
definition within that subprogram context. When control is returned to the
calling program, any pre-existent ON EOT definition is re-enabled.

See Also:
ABORTIO, ON EOR, ON EOT, TRANSFER, WAIT

OFF ERROR
Cancels event branches defined by ON ERROR.
Syntax: OFF ERROR

Sample: IF Finis THEN OFF ERROR

Description:
Execution of an OFF ERRORstatement will cause any subsequent errors to be
reported to the user and program execution will PAUSE.

See Also:
ENABLE, DISABLE, ON INTR, SYSTEM PRIORITY

OFF INTR
Cancels event branches defined by ON INTR.
Syntax: OFF INTR [interface-select-code]

Sample: OFF INTR
OFF INTR 10
OFF INTR Gpib

Description:
Any INTR events that have been logged but not yet serviced are canceled.

An OFF INTR statement without the optional interface select code disables
event-initiated branches on all devices. If the interface select code is
specified, only that interface interrupt will be disabled.

See Also:
ENABLE, ENABLE INTR, DISABLE, DISABLE INTR, ON-event, SYSTEM PRIORITY

OFF KBD
Cancels event branches defined by ON KBD.
Syntax: OFF KBD

Sample: IF Finis THEN OFF KBD

Description:
Any KBD events that have been logged but not yet serviced are canceled and
the keyboard buffer is cleared.

Execution of an OFF KBD statement within a subprogram will disable the ON
KBD definition within the context of the subprogram, but when control is
returned to the calling program the ON KBD definition is re-enabled. The
keyboard buffer remains cleared.

See Also:
ENABLE, DISABLE, KBD$, ON KBD, SYSTEM PRIORITY

OFF KEY
Cancels event branches defined by ON KEY.
Syntax: OFF KEY [key-number]

where: key-number = numeric-expression rounded to an integer

Sample: OFF KEY
OFF KEY 2
OFF KEY Lock
IF Carkey AND NOT Housekey THEN OFF KEY

Description:
An OFF KEY statement without the key-number cancels event branches for all
softkeys. If the key-number is specified then only that softkey will be canceled.
The key-number range is zero through twenty-three. Any KEY events for
affected softkeys that have been logged but not yet serviced are canceled.
OFF KEY also restores the previous key labels.

Executing OFF KEY within a subprogram disables the ON KEY definitions
within the subprogram context. When control is returned to the calling
program the ON KEY definitions are re-enabled.

See Also:
ENABLE, DISABLE, ON KEY, SYSTEM PRIORITY

OFF KNOB
Cancels event branches defined by ON KNOB.
Syntax: OFF KNOB

Sample: IF Scroll THEN OFF KNOB

Description:
Any KNOB events that have been logged but not yet serviced are canceled.
After OFF KNOB, the knob or mouse will scroll the screen and move the
cursor.

See Also:
ENABLE, DISABLE, KNOBX, KNOBY, ON KNOB, SYSTEM PRIORITY

OFF SIGNAL
Cancels event branches defined by ON SIGNAL.
Syntax: OFF SIGNAL [signal-number]

where: signal-number = numeric-expression rounded to an integer

Sample: OFF SIGNAL
OFF SIGNAL 5
OFF SIGNAL Msg

Description:
An OFF SIGNAL statement without the signal number will cancel all the ON
SIGNAL definitions. If the signal number is specified then only that signal will
be canceled. The signal-number has a range of zero through fifteen. Any
SIGNAL events with the same signal number that have been logged but not
yet serviced are canceled. OFF SIGNAL applies to the current context only.

See Also:
ENABLE, DISABLE, ON SIGNAL, SIGNAL, SYSTEM PRIORITY

OFF TIME
Cancels event branches defined by ON TIME.
Syntax: OFF TIME

Sample: IF Clock THEN OFF TIME

Description:
Any TIME events that have been logged but not yet serviced are canceled.

Execution of an OFF TIMEstatement within a subprogram will cancel the ON
TIME definition within the context of the subprogram, but when control is
returned to the calling program the ON TIME definition is re-enabled.

See Also:
ENABLE, DISABLE, ON TIME, SYSTEM PRIORITY

OFF TIMEOUT
Cancels event branches defined by ON TIMEOUT.
Syntax: OFF TIMEOUT [interface-select-code]

where: interface-select-code = integer numeric-expression

Sample: OFF TIMEOUT
OFF TIMEOUT 8
OFF TIMEOUT Gpib

Description:
No more timeouts can occur on the affected interfaces after an OFF
TIMEOUT statement.

An OFF TIMEOUT statement without the interface-select-code will cancel the
ON TIMEOUT definitions on all interfaces. If the interface-select-code is
specified then only that interface TIMEOUT will be canceled.

See Also:
ENABLE, DISABLE, ON TIMEOUT, SYSTEM PRIORITY

ON
Transfers control to one of a list of lines.
Syntax: ON index {GOSUB | GOTO} line [,line...]

where: index = numeric-expression rounded to an integer
line = line-number | line-label

Sample: ON Choose GOSUB Placea,Placeb
ON X/2 GOTO 700,800,900

Description:
ON ... GOTO or ON ... GOSUB allows you to perform a multi-way transfer.
You can select one of a list of program line numbers by the computed value of
a numeric expression. The numeric expression is rounded to an integer value
and is used as an index to select one of the line numbers from the list.

If the integer value is 1, the first line number is used. If the integer value is 2,
the second line number is used and so on. If the index number is less than one
or greater than the number of line numbers in the list, an error is generated.

If GOSUB is specified the matching RETURN is to the line following the ON
statement.

See Also:
GOTO, GOSUB, RETURN

ON CYCLE
Defines a repeating event branch.
Syntax: ON CYCLE seconds [,priority] action

where: seconds = numeric-expression rounded to an integer.
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON CYCLE Seconds,Priority CALL Sub
ON CYCLE Max RECOVER Names
ON CYCLE 1200,3 GOTO 2000

Description:
ON CYCLE defines a repeating event branch. After the specified number of
seconds has passed, an event is generated and the cycle is begun again. The
value of seconds can range from 0.01 to 167772.16 but is rounded to the
timing resolution of the computer. If short CYCLE values cause events to
occur faster than the computer can service them, some events will be lost.

There is only one CYCLE timer. Executing a new ON CYCLE while another ON
CYCLE is still in effect will cause the CYCLE timer to use the new seconds
value. If the ON CYCLE is executed in a different program context the original
ON CYCLE definition is restored when control returns to the calling context.
The old CYCLE time is not restored, however.

ON CYCLE is canceled by OFF CYCLE and disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it.

Common Information
The following information is common to the ON CYCLE, DELAY, EOR, EOT,
INTR, KBD, KEY, KNOB, SIGNAL, TIME statements.

The line number or line label following the GOTO, GOSUB or RECOVER or the
subprogram name following the CALL indicates where to transfer control when
the event occurs. Line numbers or labels must be in the same subprogram as
the ON statement. When returning from a CALL or GOSUB execution continues
with the line that would have executed next when the event occurred.
RECOVER causes the program to SUBEXIT from subprograms as needed to
return to the defining subprogram and then does a GOTO to the specified
program line. (The defining subprogram is the subprogram with the ON
statement.)

The event branch can only occur if the current SYSTEM PRIORITY is less than
the priority specified in the ON statement. The default priority is one. The
highest priority that can be specified is fifteen. ON END, ON ERROR and ON
TIMEOUT events have a higher priority than all other events. If an event
branch can not take place because of system priority, the event is logged and
occurs later when the system priority drops to a level which allows it.

When an event branch is taken the system priority is changed depending on
the branch type. With a GOTO the system priority is not changed. With a
RECOVER the system priority is only changed if any SUBEXITs are performed,
in which case the system priority is restored to the value current when the
defining subprogram called another subprogram. With a CALL or GOSUB the
system priority is changed to the specified priority. When returning from the

CALL or GOSUB the system priority is restored to the value current before the
branch was taken.

If other subprograms have been called from the defining subprogram when
the event occurs, when the branch can be taken depends on the branch type.
CALL or RECOVER branches can still occur as soon as the event occurs.
(Although branches are not taken in the middle of execution of a line; the
branch is taken between lines.) GOTO or GOSUB branches can not be taken
immediately. The event will be logged and then serviced when control returns
to the defining subprogram.

See Also:
ENABLE, DISABLE, OFF CYCLE, SYSTEM PRIORITY

ON DELAY
Defines an event branch after specified seconds.
Syntax: ON DELAY seconds [,priority] action

where: seconds = numeric-expression rounded to an integer.
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON DELAY Seconds,Priority CALL Sub1
ON DELAY 3 GOTO 5710
ON DELAY Maxtime,4 GOSUB Branch

Description:
ON DELAY defines a one time event branch to take after a specified number
of seconds. The value of seconds can range from 0.01 to 167772.16 but is
rounded to the timing resolution of the computer.

There is only one DELAY timer. Executing a new ON DELAY while another ON
DELAY is still in effect will cause the DELAY timer to use the new seconds
value. If the ON DELAY is executed in a different program context, the
original ON DELAY definition is restored when control returns to the calling
context. The old DELAY time is not restored, however.

ON DELAY is canceled by OFF DELAY and disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it.

More information about ON DELAYcan be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF DELAY, SYSTEM PRIORITY

ON END
Defines an event branch for end-of-file conditions.
Syntax: ON END @io-path action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON END @Dat GOTO 750
ON END @Code CALL Find
ON END @File RECOVER Fix

Description:
When you ENTER data and there is no more data in a file, or when a random
access OUTPUT or ENTER requires more bytes than the record size, an end-of-
file error occurs which may be caught by the ON END statement. The ON
END statement must be executed before the end-of-file error condition occurs.
If an ON END event handler does not exist, error 59 occurs, which can be
trapped like other errors with an ON ERROR handler.

ON END is canceled by OFF END but is not disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it.

When returning from a CALL or GOSUB execution continues with the line
following the line causing the end-of-file.

Common Information for ON END, ERROR, TIMEOUT
The line number or line label following the GOTO, GOSUB, or RECOVER or the
subprogram name following the CALL indicates where to transfer control when
the event occurs. Line numbers or labels must be in the same subprogram as
the ON statement. RECOVER causes the program to SUBEXIT from
subprograms as needed to return to the defining subprogram and then does a
GOTO to the specified program line. (The defining subprogram is the
subprogram with the ON statement.)

The ON END and ON TIMEOUT events have a fixed priority of fifteen and ON
ERROR has a fixed priority of seventeen. However, when one of these events
occurs, the current SYSTEM PRIORITY is ignored and the branch occurs
immediately. The only exception is when an error occurs when the system
priority is already seventeen; this "double fault" condition can not be trapped.

When an event branch is taken the system priority is changed depending on
the branch type. With a GOTO the system priority is not changed. With a
RECOVER the system priority is only changed if any SUBEXITs are performed,
in which case the system priority is restored to the value current when the
defining subprogram called another subprogram. With a CALL or GOSUB the
system priority is changed to fifteen for ON END and ON TIMEOUT or
seventeen for ON ERROR. When returning from the CALL or GOSUB the system
priority is restored to the value current before the branch was taken.

If other subprograms have been called from the defining subprogram when
the event occurs, the action taken depends on the branch type. CALL or
RECOVER branches can still occur as soon as the event occurs. (Although
branches are not taken in the middle of execution of a line; the branch is
taken between lines.) GOTO or GOSUB branches can not be taken so an error
occurs.

See Also:
ERRL, ERRLN, ERRM$, ERRN, ON ERROR, ON TIMEOUT, OFF END

ON EOR
Defines an event branch for end-of-record conditions.
Syntax: ON EOR @io-path [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON EOR @Dev GOTO 1200
ON EOR @Code,2 CALL Record

Description:
The TRANSFER statement can define what is to be considered a record for the
purpose of that particular TRANSFER. When an end-of-record is detected, an
EOR event occurs which may be caught by the ON EOR statement. The ON
EOR statement must be executed before the end-of-record condition occurs.

The I/O path must be the I/O path used in the TRANSFER to specify the device.
Using the I/O path assigned to the buffer will cause an error.

If another ON EOR is executed in a different program context, the original ON
EOR definition is restored when control returns to the calling context.

ON EOR is canceled by OFF EOR and is disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it. If a context
exit is delayed until a TRANSFER terminates, any EOR events generated
during the delay are discarded. Use WAIT FOR EOR to force the event to be
serviced before the subprogram exits.

More information about ON EOR can be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ABORTIO, OFF EOR, ON EOT, TRANSFER, WAIT

ON EOT
Defines an event branch for end-of-transfer conditions.
Syntax: ON EOT @io-path [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON EOT @Dev GOTO 1200
ON EOT @Code,2 CALL Done

Description:
When a TRANSFER finishes, an end-of-transfer, EOT, event occurs which may
be caught by the ON EOT statement. The ON EOT statement must be
executed before the TRANSFER ends.

The I/O path must be the I/O path used in the TRANSFER to specify the device.
Using the I/O path assigned to the buffer will cause an error.

If another ON EOT is executed in a different program context, the original ON
EOT definition is restored when control returns to the calling context.

ON EOT is canceled by OFF EOT and is disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it. If a context
exit is delayed until a TRANSFER terminates, any EOT events generated
during the delay are discarded. Use WAIT FOR EOT to force the event to be
serviced before the subprogram exits.

More information about ON EOT can be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ABORTIO, OFF EOT, ON EOR, TRANSFER, WAIT

ON ERROR
Defines an event branch for trappable errors.
Syntax: ON ERROR action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON ERROR GOTO 2000
ON ERROR CALL Ertrap
ON ERROR RECOVER Test

Description:
The ON ERROR statement specifies an error handling routine to be called
when an error occurs during program execution. The ON ERROR statement
must be executed before the error condition occurs. The routine can evaluate
the error condition by using the ERRL, ERRLN and ERRN, functions and any
other pertinent information to determine the corrective action to take. If there
is not enough memory to run the routine, the original error is reported to the
user and the program is paused.

If another ON ERROR is executed in a different context, the original ON
ERROR definition is restored when control returns to the calling context. ON
ERROR is canceled by OFF ERROR but is not disabled by DISABLE. A SUBEXIT,
SUBEND or RETURN from the defining subprogram also cancels it.

When returning from a CALL or GOSUB execution normally continues with the
offending line. If the error handling routine does not correct the cause of the
error, the error will occur again, causing an infinite loop. To avoid re-execution
of the line, use ERROR SUBEXIT instead of SUBEXIT or ERROR RETURN instead
of RETURN.

If an error occurs in an error handling routine called with GOSUB or CALL, it is
reported to the user and the program is paused. If an error occurs in an error
handling routine called with GOTO or RECOVER, an infinite loop can result.

If ON ERROR is not used to handle an error, the program is paused and an
error message is displayed on the message line. Pressing CONTINUE will re-
execute the offending line. Type CONT followed by the line number of the next
line to continue execution without re-executing the offending line.

More information about ON ERRORcan be found under the "Common
Information" heading of the ON END manual entry.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN,
ERROR SUBEXIT, ON END, ON TIMEOUT

ON INTR
Defines a hardware interrupt initiated branch.
Syntax: ON INTR interface-select-code [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON INTR 7 GOTO 1000
ON INTR Isc,Priority CALL Sub
ON INTR Gpib,4 GOSUB Repair

Description:
ON INTR defines an event branch to be taken when an interface card
generates an interrupt. Execution of an ON INTR statement is not sufficient to
allow an interrupt to occur. As a minimum, ENABLE INTR must be executed to
establish an interrupt mask. Depending on the interface, additional
statements may have to be executed as well. Refer to the device driver
documentation for more information.

When an interrupt occurs a DISABLE INTR for the interface is automatically
executed. Consequently, an ENABLE INTR statement must be used to explicitly
re-enable interrupts.

There is only one ENABLE INTR mask per interface select code. Executing a
new ENABLE INTR while another is still in effect will cause the interface or
device to use the new mask value. If the ON INTR is executed in a different
program context, the original ON INTR definition is restored when control
returns to the calling context. The ENABLE INTR mask is not restored,
however.

ON INTR is canceled by OFF INTR and disabled by DISABLE or DISABLE INTR.
A SUBEXIT, SUBEND or RETURN from the defining subprogram also cancels it.

More information about ON INTR can be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ENABLE, ENABLE INTR, DISABLE, DISABLE INTR, OFF INTR, SYSTEM PRIORITY

ON KBD
Defines an event branch for when a key is pressed.
Syntax: ON KBD [ALL] [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON KBD GOTO 2000
ON KBD,Order GOSUB First
ON KBD ALL RECOVER 500
ON KBD ALL,3 CALL Sub

Description:
ON KBD defines an event branch to be taken when a key is pressed. ON KBD
ALL traps all alpha-numeric keys and HTBasic function keys except RESET.
The following keys are not trapped if ALL is not specified: CLR I/O, MENU,
PAUSE, s-MENU, STOP, EXECUTE, USER and any softkeys.

If ON KBD is active, immediate execution of keyboard editing and display
control function keys is suspended. All keystrokes go into a special KBD$
buffer. The buffer is cleared when it is read. The event handling routine can
selectively execute keys found in KBD$ by including them in an OUTPUT KBD
statement:
OUTPUT KBD;Buf$;

Unless an ON KNOB definition is active, movement of the mouse generates
ON KBD interrupts and places UP, DOWN, LEFT or RIGHT keystrokes into the
KBD$ buffer. If both ON KBD ALL and ON KEY are active, ON KBD ALL takes
precedence over ON KEY.

Executing a new ON KBD while another ON KBD is still in effect overrides the
previous ON KBDdefinition. If the ON KBD is executed in a different program
context, the original ON KBD definition is restored when control returns to the
calling context.

ON KBD is canceled by OFF KBD, disabled by DISABLE and temporarily
disabled by an LINPUT, INPUT, or ENTER KBD statement. A SUBEXIT, SUBEND,
or RETURN from the defining subprogram also cancels it.

More information about ON KBD can be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, KBD$, OFF KBD, SYSTEM PRIORITY

ON KEY
Defines an event branch for when a softkey is pressed.
Syntax: ON KEY key-number [LABEL label] [,priority] action

where: key-number = numeric-expression rounded to an integer.
label = string-expression
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON KEY 1 GOTO 200
ON KEY 5 LABEL Find$ RECOVER 500
ON KEY 2 LABEL "Print",3 CALL Findings

Description:
ON KEY defines a softkey event branch and optionally a label to be displayed
in the softkey menu. When the softkey is pressed, the event occurs. The key
number must be in the range of zero through twenty-three. Only as many
characters as will fit in the menu area softkey label are displayed from the
label.

If the label begins with a CLR LN key (CHR$(255) & "#"), only the characters
after the CLR LN will be displayed. If the label begins with a CONTINUE key,
the two characters (CHR$(255) & "C") will be replaced with the string
"CONTINUE". If the label begins with a RUN key, the two characters
(CHR$(255) & "R") will be replaced with the string "RUN".

Executing a new ON KEY while another ON KEY for the same softkey is still in
effect will override the previous LABEL and definition. If the ON KEY is
executed in a different program context, the original ON KEYdefinition is
restored when control returns to the calling context.

ON KEY is canceled by OFF KEY, disabled by DISABLE and temporarily
disabled by an LINPUT, INPUT, or ENTER KBD statement. A SUBEXIT, SUBEND,
or RETURN from the defining subprogram also cancels it.

More information about ON KEY can be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF KEY, SET KEY, SYSTEM PRIORITY

ON KNOB
Defines an event branch for when the KNOB is turned.
Syntax: ON KNOB seconds [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON KNOB 1 GOTO 500
ON KNOB Seconds,Priority Call Sub
ON KNOB 1/2,4 GOSUB Label

Description:
ON KNOB specifies the time interval in seconds for which movement of the
KNOB is sampled. Nothing happens, however, until the first time the KNOB is
moved after the ON KNOB statement has been executed. Once initial
movement of the KNOB is detected, a timer begins for the specified interval.
When the interval has expired, KNOBX and KNOBY are set to the distance the
KNOB moved during the interval. A KNOB event is then generated. The value
of seconds can range from 0.01 to 2.55 but is rounded to the timing resolution
of the computer.

The KNOBX and KNOBY functions are read to determine the number of
increments the KNOB has been moved in the x and the y directions during
the interval.

Executing a new ON KNOB while another ON KNOB is still in effect overrides
the previous ON KNOBdefinition. If the ON KNOB is executed in a different
program context, the original ON KNOB definition is restored when control
returns to the calling context.

ON KNOB is canceled by OFF KNOB and disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it.

While the syntax of this statement specifies a knob, typically a mouse is used
instead; the syntax remains what it is for compatibility with older versions of
HP BASIC.

More information about ON KNOB can be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF KNOB, KNOBX, KNOBY, SYSTEM PRIORITY

ON SIGNAL
Defines an event branch for SIGNAL statement.
Syntax: ON SIGNAL signal-number [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON SIGNAL Selector,Priority CALL Sub2
ON SIGNAL RECOVER Trap
ON SIGNAL 8 GOTO 770

Description:
ON SIGNAL enables an event branch which occurs when a SIGNAL statement
is executed using the same signal-number. The signal-number is a numeric
expression rounded to an integer with a range of zero through fifteen.

Executing ON SIGNAL while another ON SIGNAL is still in effect for that
same signal number overrides the previous ON SIGNAL definition. If the ON
SIGNAL is executed in a different program context the original ON SIGNAL
definition is restored when control returns to the calling context.

ON SIGNAL is canceled by OFF SIGNAL and disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it.

More information about ON SIGNALcan be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF SIGNAL, SIGNAL, SYSTEM PRIORITY

ON TIME
Defines a single event branch for a specific time.
Syntax: ON TIME time [,priority] action

where: time = numeric expression in range 0 to 86,399.99.
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON TIME Hour*3600,T_pri CALL Explode
ON TIME (TIMEDATE+3600) MOD 86400 GOTO 2000

Description:
ON TIME defines an event branch to occur when the real-time-clock reaches a
specified time. The time is specified as the number of seconds since midnight.
The time specified is rounded to the resolution of the computer clock.

There is only one TIME timer. Executing a new ON TIME while another ON
TIME is still in effect will cause the TIME timer to use the new value. If the ON
TIME is executed in a different program context, the original ON TIME
definition is restored when control returns to the calling context. The old TIME
value is not restored, however.

ON TIME is canceled by OFF TIME and disabled by DISABLE. A SUBEXIT,
SUBEND, or RETURN from the defining subprogram also cancels it.

More information about ON TIME can be found under the "Common
Information" heading of the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF TIME, SYSTEM PRIORITY, TIME$, TIMEDATE

ON TIMEOUT
Defines an event branch for an I/O timeout.
Syntax: ON TIMEOUT interface-select-code, seconds action

where: action = { GOTO | GOSUB | RECOVER } line | CALL subprogram
LINE = line-number | line-label

Sample: ON TIMEOUT 4,5 GOTO 2000
ON TIMEOUT Printer,Sec GOSUB Message
ON TIMEOUT 4,1/2 RECOVER Line

Description:
ON TIMEOUT defines an event branch to take when an I/O operation on the
specified interface fails to responded within the specified number of seconds.
The value of seconds can range from 0.001 to 32.767 but is rounded to the
timing resolution of the computer. The ON TIMEOUT statement must be
executed before the I/O statement. If an ON TIMEOUT is not specified for a
particular interface and a device does not respond to an I/O action, the
computer will wait forever. Pressing the CLR I/O key will abort such an infinite
wait.

TIMEOUTs work with the ENTER, OUTPUT, PRINTALL IS, PRINTER IS and
PLOTTER IS statements, but not with the CONTROL, STATUS, READIO or
WRITEIO statements or with the CRT or KBD interfaces or with files.

ON TIMEOUT is canceled by OFF TIMEOUT but is not disabled by DISABLE. A
SUBEXIT, SUBEND, or RETURN from the defining subprogram also cancels it.

When returning from a CALL or GOSUB execution continues with the line
following the line causing the timeout.

More information about ON TIMEOUT can be found under the "Common
Information" heading of the ON END manual entry.

See Also:
OFF TIMEOUT, ON END, ON ERROR

OPTION BASE
Sets the default lower bound of array subscripts.
Syntax: OPTION BASE {0 | 1}

Sample: OPTION BASE 0
OPTION BASE 1

Description:
The default array subscript lower bound may be specified in each program
context with the OPTION BASEstatement. It must appear in the program
context before any COM, COMPLEX, DIM, INTEGER or REAL statements. There
may be only one OPTION BASE statement in any program context. If there is
no OPTION BASE statement then the default lower bound is zero.

See Also:
BASE, COM, DIM, INTEGER, REAL

OR
Returns the logical inclusive OR of two expressions.
Syntax: numeric-expression OR numeric-expression

Sample: A=1 OR 0
IF ProcA OR ProcB THEN Next
IF A=B OR X>Y THEN 1000
X=N+4*(J=1 OR K=2)

Description:
The result of A OR B is zero only if both A and B are zero. If either or both A
and B are non-zero, the result is one.

See Also:
AND, NOT, EXOR

OUT and OUTW
Outputs a byte or word to an I/O Port.
Syntax: OUT port-address, byte-value

OUTW port-address, word-value

where: port-address = numeric-expression rounded to an integer
byte-value = numeric-expression rounded to an integer in
the range 0 to 255
word-value = numeric-expression rounded to an integer

Sample: OUT &H300,64+16
OUTW Base+3,&HF001

Description:
The OUT statement outputs a byte to the specified I/O port. It is equivalent to
WRITEIO 8080,Port;Byte. The OUTW statement outputs a word to the
specified I/O port. It is equivalent to WRITEIO -8080,Port;Word. These
statements are useful for doing I/O with devices, data acquisition boards, etc.
for which there is no device driver available.

Some operating systems protect I/O ports; applications are not allowed to read
or write them. Under such operating systems, these functions are not allowed.
Windows NT and UNIX are two such operating systems.

Porting to HP BASIC
OUT and OUTW are new HTBasic statements that are not available in HP
BASIC. They should not be used in programs that must be ported back to HP
BASIC.

See Also:
INP and INPW, READIO, WRITEIO

OUTPUT
Outputs items to a specified destination.
Syntax: OUTPUT dest [USING image] [; items [{,|;}] [END]]

where: dest = @io-path [,record-number] |
device-selector |
string-name$ [(subscripts)]
items = item [{,|;} item [{,|;} item...]]
item = numeric-expression | numeric-array(*) |
string-expression | string-array$(*)
image = line-number | line label | string-expression
See IMAGE for image syntax.
subscripts = subscript [,subscript...]

Sample: OUTPUT @Test;Sarray(*)
OUTPUT @Sequence,4 USING SpecA;Part(3)
OUTPUT 10 USING "6A";V$[2;6]
OUTPUT @Printer;Order;SSN;Work$,END

Description:
Numeric data, array elements or character strings are output to the specified
destination.

Unless USING    is specified, numeric items are output in standard numeric
format. If the absolute value is in the range 1E-4 to 1E+6, it is rounded to
twelve digits and output in floating point form. Otherwise the number is
output in scientific notation.

Full arrays are output in row major order, using the full array specifier, "(*)".
Each element is an item and is separated by a comma or semicolon if one
follows the array name.

Destinations:
File.    An ASCII, BDAT or ordinary file may be used as the destination. The file
must have been ASSIGNed to an I/O path. The ASSIGN statement determines
the attributes to be used. With FORMAT ON, BDAT and ordinary files are
written as ASCII characters. With FORMAT OFF, BDAT and ordinary files are
written in internal format (explained below). An ASCII file is always written as
ASCII characters. All files may be accessed serially and additionally, BDAT and
ordinary files may be accessed randomly by including a record number.

Pipe.    A pipe may be used as the destination. The pipe must be writable and
have an associated I/O path. The ASSIGN statement determines the attributes
used. With FORMAT ON, pipes are written as ASCII characters. With FORMAT
OFF, pipes are written in internal format (explained below). If FORMAT OFF is
used, the process at the read end of the pipe must be able to understand the
format. Pipes must be accessed serially.

String.    A string may be used as the destination. OUTPUT begins at the
beginning of the string and writes it serially.

Device.    A device-selector or I/O path may be used to OUTPUT items to a
device. The default system attributes are used with a device-selector. The
ASSIGN statement determines the attributes used with an I/O path.

If the device selector is one, then the destination is the CRT. If the device
selector is two, then the destination is the keyboard. This can be used to enter
the keyboard function key sequences into the keyboard buffer. Each function
sequence is two bytes, a CHR$(255) followed by the function specifier.

Buffer.    A buffer assigned to an I/O path may be used as the destination. The
buffer fill pointer points to the buffer location to be written next and is
updated as data is OUTPUT. If the empty pointer is encountered, an error is
generated.

FORMAT
If the FORMAT ON attribute is specified in the ASSIGN statement, the output is
sent in ASCII format and the punctuation following each item affects the
output. A semicolon causes an item to be sent with nothing following it, a
comma causes a string item to be sent with a CR/LF following it and a numeric
item to be sent with a comma following it. If no punctuation follows the last
OUTPUT item, the EOL sequence follows it and if punctuation follows the last
OUTPUT item, the EOL sequence is not output.

A complex number is output in rectangular form, real part first, then a comma
and finally, the imaginary part. If a semicolon follows the complex item then
the comma is not output.

If the FORMAT OFF attribute is specified in the ASSIGN statement the output is
sent in internal format (explained below) and the punctuation following each
item has no effect on the output.

END
The optional END may be used after the last data item. If USING is not
specified, then END: 1) suppresses the EOL sequence from being output after
the last item, 2) sends an EOI signal with the last character of the last item
sent to a IEEE-488 device and 3) truncates a file.

If USING is specified, then END: 1) suppresses the EOL sequence only when
no data is output from the last output item, 2) sends EOI with the last
character of the last item (unless no data is sent from the last item) and 3)
truncates a file. A comma before END will output an item terminator (a
comma for numeric items or a CR/LF for string items).

USING
See IMAGE for a complete explanation of the image list. The items specified in
the image list are acted upon as they are encountered. Each image list item
should have a matching output item. Processing of the image list stops when
no matching output item is found. Conversely, the image list is reused starting
at the beginning to provide matches for all remaining output items. FORMAT
ON is used in connection with OUTPUT USING, even if FORMAT OFF has been
specified.

OUTPUT USING is not allowed to ASCII files. Use BDAT or ordinary files or if
necessary, do the OUTPUT USING to a string and then OUTPUTthe string to
the ASCII file.

Internal Format (FORMAT OFF)
The internal format for an INTEGER is a two byte, two's complement, binary
integer. LSB/MSB FIRST (see ASSIGN) can be used to specify the order in which
the two bytes are sent or received. Internally, the order is stored in the form

most natural to the computer's processor.

The internal format for REAL numbers is an eight byte, IEEE compatible
floating point number (see IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Std. 754-1985). As with integers, LSB/MSB FIRST    can be used to
determine the byte ordering during I/O statements.

A COMPLEX number is stored internally as two real numbers.

The internal format for strings depends on the source/destination of the I/O
statement. The string format for devices and BDAT files consists of a string
length followed by the string contents. Specifically, a four byte integer is
sent/received first. The integer specifies the length of the string. The actual
string is then sent/received. An even number of bytes is always sent/received,
therefore, if the string is odd in length an extra padding byte is sent/received.
As with integers, LSB/MSB FIRST    can be used to determine the byte ordering
of the integer length.

For ordinary files, the internal format for strings is a null-terminated string. For
ASCII files FORMAT ON/OFF    has no affect. Data is always stored as ASCII
strings proceeded by a two byte length and padded by a space if necessary to
make the string length even. The string length is always stored with MSB
FIRST.

Records
When outputing to a file, you may specify a record number. The first record in
the file is record 1. The record size for BDAT files is specified when the file is
created and defaults to 256 bytes. For other file types the record size is 1;
thus the record number is actually the offset into the file. The first byte of the
file is at offset 1. When a record number is specified and the record size is not
1, if the OUTPUT produces more data than a single record, an End of Record
error or event occurs.

OUTPUT KBD Porting
Three editor functions have been added to HTBasic and should not be used in
programs that will be executed with HP BASIC: DEL LEFT, NEXT WORD and
PREV WORD. Otherwise, all the two-character function key sequences (
CHR$(255)&CHR$(X)) used by HP BASIC are compatible with HTBasic. If
multiple statements are output in a single OUTPUTKBD statement, they are
all executed before the next BASIC line. HP BASIC sometimes intermixes the
execution with multiple BASIC lines, based on the presence or absence of
"closure keys."

See Also:
ASSIGN, ENTER, IMAGE, INPUT, PRINT

PASS CONTROL
Passes Active Controller capability.
Syntax: PASS CONTROL {@io-path | device-selector}

Sample: PASS CONTROL 719
PASS CONTROL @Dev

Description:
If an io-path is specified, it must be assigned to a IEEE-488 device. If the
computer is the active controller and a primary address is specified, control is
passed to the addressed device. An error is generated if the computer is not
the active controller or only an interface select code is specified. The specified
device is talk addressed, a Take-Control-Message (TCT) is sent and the
Attention line is set false. The computer then becomes a bus device, as
opposed to a bus controller

See Also:
ABORT , CLEAR, LOCAL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

PAUSE
Pauses program execution.
Syntax: PAUSE

Sample: PAUSE

Description:
PAUSE stops program execution before the next program line. The values of
the variables in the current program context may be examined and modified.
The CONTINUE key or the CONT command will resume program execution.
RUN must be used to restart program execution if a program is modified
during PAUSE

See Also:
CONT, TRACE

PDIR
Sets the rotation angle for IPLOT, RPLOT, POLYGON and RECTANGLE.
Syntax: PDIR angle

Sample: PDIR 45
IF Ready THEN PDIR Graphangle

Description:
The angle is a numeric-expression that specifies the direction and amount of
rotation. It is measured in a counter-clockwise direction from the positive X-
axis. Rotation is about the local point of origin. The current trigonometric
mode (RAD or DEG) determines the units for angle. The default mode is RAD.

See Also:
DEG, IPLOT, LDIR, PIVOT, POLYGON, RAD, RECTANGLE, RPLOT

PEN
Sets the line color or physical pen.
Syntax: PEN pen-number

Sample: PEN 3
PEN -1
PEN Feltpen

Description:
The PEN statement sets the color which will be used for line drawing. The pen
can also be changed with PLOT, IPLOT, RPLOT and SYMBOL arguments. See
COLOR for a complete explanation of pen-numbers for the CRT.

For a plotter, the PEN statement selects one of the available pens. The PEN
number is sent to the plotter without any range checking. You should specify
only values that are legal on your plotter. Note that for HPGL plotters, a pen
number of zero instructs the plotter to put away the pen.

Drawing Mode Table
The writing mode of the pen is specified by the current drawing mode and the
sign of the pen number. GESCAPE CRT,4 is used to change to normal drawing
mode. GESCAPE CRT,5 is used to change to alternate drawing mode. The
following table defines the different writing modes available. P is a positive
pen number, X is the present value of a pixel.

GESCAPE CRT,4 GESCAPE CRT,5
Statement Normal Alternate                 
PEN P P BINIOR(X,P)
PEN 0 BINCMP(X)* 0
PEN -P BINAND(X,BINCMP(P)) BINEOR(X,P)

*PEN 0 in Normal Drawing Mode will do BINCMP(X) in non-color map mode and
0 in COLOR MAP mode.

See Also:
AREA PEN, COLOR, SET PEN

PENUP
Raises the PEN on the current plotting device.
Syntax: PENUP

Sample: PENUP

Description:
Raises the PEN on the current plotting device

See Also:
CLIP, SHOW, VIEWPORT, WINDOW

PERMIT
Changes file protection permissions.
Syntax: PERMIT specifier [; protection [; protection...]]

where: specifier = file-specifier | path-specifier
protection = category : [permission [,permission...]]
category = OWNER | GROUP | OTHER
permission = READ | WRITE | SEARCH

Sample: PERMIT "/home/anita";OWNER : READ,WRITE,SEARCH
PERMIT "/dir/file";GROUP : READ;OTHER : READ;OWNER : READ
PERMIT "file2";OTHER :;GROUP :

Description:
On operating systems which support file permissions, PERMIT changes the
permissions assigned to a file. If the operating system does not support this
feature or does not support some of the categories or codes you specify or if
you do not have the proper privilege to change the permissions, an error is
returned.

This statement is not used under DOS, Windows and NT. Use PROTECT
instead.

UNIX Usage Notes
This statement is equivalent to the UNIX chmod command. Only the owner of
a file or the super-user can change a file's permissions. (Under HP-UX,
setprivgrp and ACL also affect who can use chmod or PERMIT.) See CAT for
an explanation of file permissions.

If a type of user is not specified, the permissions for that type of user are
unaffected (as opposed to HP BASIC/UX, which resets them to some default).
When a type of user is specified, the permissions specified are given and the
permissions not specified are taken away.

See Also:
CAT, CHOWN, CHGRP, CREATE, PROTECT, TIMEZONE IS

PI
Returns the value 3.14159265358979.
Syntax: PI

Sample: Theta=PI
Area=PI*Radius^2

Description:
The function PI returns an approximation of the value of the mathematical
constant Pi, which is the ratio of the circumference of a circle to its diameter.

See Also:
ACS, ASN, ATN, COS, DEG, RAD, SIN, TAN

PIVOT
Rotates the coordinates of all drawn lines.
Syntax: PIVOT angle

Sample: PIVOT 90
IF Adjust THEN PIVOT Lines

Description:
Angle is a numeric-expression that specifies the amount of rotation for all
subsequently drawn lines. The rotation is done about the logical pen position
when the PIVOT statement is executed. Positive values rotate counter-
clockwise. Non-zero values of PIVOT cause the physical and logical pen
positions to be different. Logical pen movement is unaffected. LABELs and
AXES statements are unaffected.

The current trigonometric mode (RAD or DEG) determines the units for angle.
The default mode is RAD.

See Also:
DEG, IPLOT, LDIR, PDIR, PLOT, POLYGON, POLYLINE, RAD, RECTANGLE, RPLOT

PLOT
Moves the pen to the specified X and Y coordinates.
Syntax: PLOT x-position, y-position [,pen-control]

PLOT numeric-array(*) [,FILL] [,EDGE]

Sample: PLOT 25,50
PLOT Xx,Yy,Pen
PLOT Array(*)
PLOT Picto(*),FILL,EDGE

Description:
The PLOT statement moves the pen to the specified X and Y position. You
may specify when the pen is to be raised or lowered with the optional pen-
control value. A two or three column array may be used to supply the
coordinate and pen-control values.

If you specify a destination which is outside the clipping area, the logical
position is set to that point but the pen is not moved. Only the portion of the
vector which lies inside the clipping area is plotted.

The PIVOT statement affects the PLOT statement.

Pen-control
The optional pen-control value controls whether the pen is moved up or down
and whether the change occurs before or after the move:

Pen-control Value Affect                               
zero and positive even raise after move
positive odd lowered after move
negative odd lowered before move
negative even raised before move

The default pen-control value, one, specifies the pen is lowered after a move.

Array
PLOT uses a two-dimensional two- or three-column array to plot polygons.
The array specifies the polygon shape using column one for X coordinates and
column two for Y coordinates. The optional third-column specifies the
operation (pen-control, AREA PEN, AREA INTENSITY, LINE TYPE, PEN, FILL and
EDGE) for each row of the array. If a two-column array is specified, the default
operation on each row is one, pen down after move.

The table below shows the meaning of columns 1 and 2 for each of the
operations specified in column 3. These operations apply to PLOT, IPLOT,
RPLOT and SYMBOL.

Column 1 Column 2 Column 3 Column 3 Meaning
X value Y value < -2 use even/odd pen control
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number --- 3 PEN
line type repeat value 4 LINE TYPE
color --- 5 AREA INTENSITY
--- --- 6 Start polygon mode w/FILL
--- --- 7 End polygon mode
--- --- 8 End of data for array
--- --- 9 No operation, values ignored
--- --- 10 Start polygon w/EDGE
--- --- 11 Start polygon w/FILL & EDGE
--- --- 12 Draw a FRAME
pen number --- 13 AREA PEN
red value green value 14 AREA INTENSITY
blue value --- 15 AREA INTENSITY
--- --- > 15 No operation, values ignored

Select AREA R/G/B color
Operation 5 in column 3 selects the AREA INTENSITY color (see COLOR for an
explanation of AREA INTENSITY colors). The column one value is divided into
red, green and blue numbers, each five bits in length (the sixteenth bit of
column one is ignored). Each five-bit number specifies a value in the range
zero to sixteen. This number is subtracted from sixteen to calculate the
intensity value for each of the colors: red, green, blue. Intensities range in
value from zero (darkest) to sixteen (most intense).

For example, if column 1 is set to zero, then each of the three groups in
column 1 is set to zero. Sixteen minus zero yields sixteen for all three groups.
Sixteen is full intensity, therefore, the area fill color will be white.

The following equation calculates the value for column one given R, G, B
values in the range zero to one.

Column1 = 16-16*R + SHIFT(16-16*G,-5) + SHIFT(16-16*B,-10)

Operations 14 and 15 can also be used to select the AREA INTENSITY red,
green and blue values. The range of intensity is zero (no color) to 32,767 (full
intensity). Operation 14 should be done before 15 and the operation takes
effect when operation 15 is done.

FILL and EDGE
A polygon is formed from a line sequence of 2 or more points with the optional
FILL or EDGE specifiers. A polygon is drawn by plotting the first point, each
successive point and closed by drawing the final point back to the first point.

If FILL is specified, the polygon is filled with the current AREA fill color and if
EDGE is specified, the polygon is edged with the current PEN color. The array
pen-control instructions supersede any other instructions on pen movement,
LINE TYPE and FILL and EDGE specifiers.

See Also:

AREA, CLIP, DRAW, IPLOT, MOVE, POLYLINE, POLYGON, RPLOT

PLOTTER IS
Specifies the graphics output device and language.
Syntax: PLOTTER IS destination, language [,hard-clip]

[; { APPEND|COLOR MAP }]

where: destination = file-specifier | device-selector |
pipe-specifier
language = string expression which resolves to the name
of a graphics driver and can include driver options
hard-clip = xmin,xmax,ymin,ymax - four numeric-expressions specifying
the size of the drawing surface

Sample: PLOTTER IS CRT,"INTERNAL";COLOR MAP
PLOTTER IS "| glterm","HPGL"
PLOTTER IS 10,"HPGL",2,268,0,190
PLOTTER IS "Pictfile","HPGL",5.75,250.50,7.25,136.875

Description:
The PLOTTER IS statement directs vector graphics to a device, file or pipe.
(Use the DUMP DEVICE IS statement to print bit-mapped graphics from the
screen to a device, file or pipe.) The default PLOTTER ISdevice is the CRT.
Executing a PLOTTER IS statement directs all subsequent graphics output to
the specified target.

The destination of the PLOTTER IS statement tells the graphic driver where
to send output. Output can go to the display, device, file or pipe, although not
every driver can send output to all the targets. For example, display drivers
can only send output to the display and it doesn't make sense to send DXF
output to anything but a file.

Display
To direct output to the CRT, use the reserved word CRT as the destination or
the interface select codes 1, 3 or 6. For most display drivers, the value affects
how the driver handles text as explained below. If the display has a writable
color map, the COLOR MAP option can be used to enable color map
manipulation. See COLOR and SET PEN for an explanation of how to change
the color map. If COLOR MAP is specified and the display type selected does
not have a color map, an error is returned. The hard-clip units of a CRT are
fixed so hard-clip values should not be specified. Example:
PLOTTER IS CRT,"INTERNAL"

Some display drivers (such as the EGA and VGA drivers) are capable of two
modes of operation, CRTA and CRTB. Specifying interface select code 3 in the
PLOTTER IS statement selects CRTA mode. The CRTA mode uses a true text
mode to display the ALPHA screen. Specifying 6 selects CRTB mode. The CRTB
mode uses bits written into a graphics screen to display the ALPHA screen.
Specifying 1 or CRT in the PLOTTER IS statement re-selects the last mode
used. More information on these modes is given later in this entry. The
following example selects the CRTA driver:
PLOTTER IS 3, "INTERNAL"

Devices
To specify a device such as a plotter or a printer capable of vector graphics,

use the interface select code of the interface connecting the device. Use the
device-selector if the device is on the IEEE-488 bus. If hard-clip limits are
specified, they are given in the order "xmin, xmax, ymin, ymax" and are
specified in millimeters. If the hard-clip limits are not specified, they are read
from the device when this statement is executed. The specified device must
respond to this query or the computer will wait indefinitely for the response.
Use the CLR-I/O key to stop the computer if it gets stuck in this state.

The following example sends HPGL commands to a LaserJet III printer. The first
line resets the printer, starts landscape printing and switches into HPGL mode.
The second line directs plotter output to LPT1 (interface select code 10) and
sets the hard-clip units for an 8-1/2 x 11 sheet of paper:
OUTPUT 10;CHR$(27)&"E"&CHR$(27)&"&l1O"&CHR$(27)&"%1B";
PLOTTER IS 10,"HPGL",2,268,0,190

Files
To send graphics output to a file, the target should be replaced with the file
name. The file must be an existing ordinary or BDAT file. The hard-clip limits
may be specified or defaulted to ±392.75 mm in the x axis and ±251.5 mm in
the y axis. The hard-clip limits are "xmin, xmax, ymin, ymax" and are specified
in millimeters. If APPEND is not specified, the file is positioned to the
beginning and truncated. The file is closed when another PLOTTER IS, GINIT
or SCRATCH A statement is executed. Example:
CREATE "DRAW.PLT",0
PLOTTER IS "DRAW.PLT","HPGL"

Pipes
If a pipe is specified, the pipe-specifier must begin with the "|" pipe character
and is followed by a command to start the process that the output is sent to.
Pipes are supported under UNIX, but not DOS. Hard-clip units are treated the
same as for output to a file. Example:
PLOTTER IS "| pageview -","PS",26,190,26,262

Language
HTBasic supports loadable graphics drivers. The language string expression
specifies the name of a driver. The first time a driver is specified in a
PLOTTER IS statement, the driver is loaded and graphics are directed to it.
When the plotting language is subsequently specified, the driver is not loaded
again, but graphics are again directed to it. The following table lists the drivers
available at the time of this manual printing. (Not all drivers are available in all
versions.)

Name Type Display Adapter   

INTERNAL CRT Reuse last CRT driver specified
EGA CRT Enhanced Graphics Adapter
VGA CRT Video Graphics Array
SVGA16 CRT 16-color modes of some Super-VGA cards
SVGA16B CRT 16-color modes of some Super-VGA cards
SVGA256 CRT 256-color modes of some Super-VGA cards
S3 CRT S3 chip set graphics accelerator cards
VGAB CRT Suitable for 2-byte VGA like Japanese DOS/V
MGA CRT Multimode 640x400x2 (Super-CGA)
HGC CRT Hercules Graphics Card
CGA CRT Color Graphics Adapter
WIN CRT Microsoft Windows Display Driver
XWIN CRT The X Window System
HPGL Graphic Hewlett-Packard Graphic Language
HPGL2 Graphic HPGL and HPGL2 (including LaserJet III)
DXF Graphic AutoCAD drawing interchange file format
PS Graphic PostScript printers, plotters, and files

"INTERNAL" is a special language string synonymous with the last CRT
specified. The following examples illustrate use of the PLOTTER IS statement
in selecting device drivers:
PLOTTER IS CRT,"INTERNAL"
PLOTTER IS CRT,"SVGA256"
PLOTTER IS 712,"HPGL"
PLOTTER IS "file.dxf";"DXF"

HTBasic automatically loads one display driver when it starts. If you specify
the -CRT command line switch (see the Installing and Using manual), the
driver specified is loaded and used. If no -CRT switch is present, HTBasic
automatically loads the most appropriate display driver from the basic set. For
the DOS version of HTBasic, the drivers in the basic set are the HGC, CGA,
EGA and VGA drivers. The Windows version of HTBasic always uses the WIN
driver and the UNIX versions always use the XWIN driver.

In some versions, drivers can only be loaded while in the MAIN subprogram. It
is recommended that PLOTTER ISstatements be included in your AUTOST file
to load any necessary drivers. (Drivers can also be loaded in immediate mode
when the BASIC RUNLIGHT is Idle.)

Driver Options
It is sometimes necessary to specify options for the graphic drivers. Options
are included by appending a semicolon to the driver name, followed by the
options. The syntax for specifying options in the PLOTTER IS statement or
with the -CRT command line switch is:

HTB -CRT driver[;options]
PLOTTER IS target,"driver[;options]"

The specific driver sections contain more details on these options.

EGA and VGA Drivers
The EGA and VGA drivers require the "MONO" option when used with a
monochrome monitor:

C> HTB -CRT EGA;MONO
C> HTB -CRT VGA;MONO

If the MONO option is not specified, then a color monitor is assumed. Sixteen
colors are available. For example:

C> HTB -CRT EGA
C> HTB -CRT VGA

SVGA16 and SVGA16B Drivers$IDriver;SVGA16B>
Most VGA board clones have 16 color graphic modes that exceed the standard
IBM resolution of 640x480x16. These boards are commonly called "Super-
VGA" (SVGA) boards. To use SVGA resolutions, you must have a monitor
capable of handling the high frequencies generated, and you sometimes must
add more memory to your SVGA board. Consult the manufacturer's
documentation for your board to find these requirements. (To use 256 color
modes of SVGA cards, use the SVGA256 driver.)

The SVGA16 and SVGA16B CRT drivers are designed to support as many of
the different Super VGA boards as possible. Because there is no pervasive
Super VGA standard, higher resolutions are implemented in different ways by
different manufacturers and not all modes of all boards will work with these
drivers. In fact, the implementation methods vary so drastically, that two
drivers are required to support most boards.

Syntax
The syntax of options for the -CRT command line switch and for the PLOTTER
IS statement is the same:

HTB -CRT driver;chipset,resolution[,mode-numbers]
PLOTTER IS CRT,"driver;chipset,resolution[,mode-number]"

Driver and Chipset are given in the following table. To find the chip set used by
your VGA card, examine the names printed on the tops of the integrated
circuits on the card.

Chip Set Driver Chipset Name
ATI Technologies SVGA16B ATI
Chips & Technologies SVGA16 CHIPS
Genoa Systems SVGA16 GENOA
Paradise/Western Digital SVGA16 PARADISE
Trident SVGA16 TRIDENT
Tseng Labs 3000 SVGA16 TSENG3
Tseng Labs 4000 SVGA16B TSENG4
Video 7 SVGA16 VIDEO7

Resolution specifies the number of pixels in the horizontal and vertical
directions, separated by an "x". For example,

C> HTB -CRT SVGA16B;TSENG4,1024x768
C> HTB -CRT SVGA16;TSENG3,1024x768
PLOTTER IS CRT,"SVGA16B;ATI,1024x768"
PLOTTER IS CRT,"SVGA16;TRIDENT,800x600"
PLOTTER IS CRT,"SVGA16;TRIDENT,1024x768"

Resolutions of 640x480x16 and 800x600x16 require 256 KBytes of memory on

the Super VGA card. The 1024x768x16 display resolution requires 512 KBytes
of memory.

Short Cuts
If the desired resolution is 640x480, no options need to be specified. This
mode is the standard IBM 640x480x16 mode and will work on all SVGA cards.
Examples:

C> HTB -CRT SVGA16
PLOTTER IS CRT,"SVGA16"

Mode Numbers
For most SVGA cards, you do not need to specify the mode numbers. Correct
mode numbers can usually be inferred from the chipset. If your SVGA card
does not work without specifying mode numbers, see the Installing and Using
the DOS Version manual for more information.

SVGA256 Driver
Most VGA board clones have 256 color graphic modes that exceed the
standard IBM resolution of 320x200x256. These boards are commonly called
"Super-VGA" (SVGA) boards. To use SVGA resolutions, you must have a
monitor capable of handling the high frequencies generated, and you
sometimes must add more memory to your SVGA board. Consult the
manufacturer's documentation for your board to find these requirements.

The Super VGA 256 color (SVGA256) CRT driver is designed to support as
many of the different Super VGA boards as possible. Because there is no
pervasive Super VGA standard, higher resolutions are implemented in
different ways by different manufacturers and not all modes of all boards will
work with this driver.

The CRT driver provides support for a number of chip sets. They are the ATI,
Chips & Technologies, Genoa, Paradise/Western Digital, Trident, Tseng 3000,
Tseng 4000, and the Video 7. Your particular board may not work with this
driver since each chip set may have a couple of revisions that are slightly
different. Also, each company continues to make enhancements to their chips,
which may make them incompatible with this driver.

Syntax
The syntax of options for the -CRT command line switch and for the PLOTTER
IS statement is the same:

HTB -CRT SVGA256;chipset,resolution[,mode-numbers]
PLOTTER IS CRT,"SVGA256;chipset,resolution[,mode-numbers]"

Chipset is the chipset name from the following table. To find the chip set used
by your VGA card, examine the names printed on the tops of the integrated
circuits on the card.

Chip Set Chipset Name
ATI Technologies ATI
Chips & Technologies CHIPS
Genoa Systems GENOA
Paradise/Western Digital PARADISE
Trident TRIDENT
Tseng Labs 3000 TSENG3
Tseng Labs 4000 TSENG4
Video 7 VIDEO7

Resolution specifies the number of pixels in the horizontal and vertical
directions, separated by an "x". For example,

C> HTB -CRT SVGA256;ATI,800x600
PLOTTER IS CRT,"SVGA256;TSENG3,800x600"
PLOTTER IS CRT,"SVGA256;TRIDENT,800x600"
PLOTTER IS CRT,"SVGA256;TRIDENT,1024x768"

Resolutions of 640x480x256 and 800x600x256 require 512 KBytes of memory
on the Super VGA card. The 1024x768x256 display resolution requires 1
MByte of memory.

Short Cuts
The default resolution is 640x480 and doesn't need to be specified. Further, if
the desired resolution is 640x480 and you also have a TSENG4 chipset, no
options need to be specified. Examples:

C> HTB -CRT SVGA256;PARADISE
PLOTTER IS CRT,"SVGA256" !defaults to TSENG4,640x480
PLOTTER IS CRT,"SVGA256;TRIDENT" !defaults to 640x480

Mode Numbers
For most SVGA cards, you do not need to specify the mode-numbers. Correct
mode numbers can usually be inferred from the chipset. If your SVGA card
does not work without specifying mode numbers, see the Installing and Using
the DOS Version manual for more information.

S3 CRT Driver
The S3 CRT driver supports many of the video boards which use one of the
following S3 chipsets: 801, 805, 911, 924, and 928. The S3 chipset is a high
performance graphical user interface accelerator specifically designed to
speed up graphical applications. Because of the large number of different chip
sets and video board implementations, your particular board may not work
with this driver. Please report video boards that do not operate as expected to
HTBasic technical support.

Syntax
The syntax of options for the -CRT command line switch and for the PLOTTER
IS statement is the same:

HTB -CRT S3;chipset,resolution[,mode-numbers]
PLOTTER IS CRT,"S3;chipset,resolution[,mode-numbers]"

Chipset is the chipset name from the following table. To find the number of the
chip set used by your video card, consult the video card documentation or
examine the numbers printed on the tops of the integrated circuits on the

video card.

Chip Set Chipset Name
S3 801 C801
S3 805 C805
S3 911 C911
S3 924 C924
S3 928 C928

Resolution specifies the number of pixels in the horizontal and vertical
directions, separated by an "x". It also is used to specify the number of colors.
For example,

C> HTB -CRT S3;C924,800x600x16
PLOTTER IS CRT,"S3;C911,800x600x16"
PLOTTER IS CRT,"S3;C928,800x600x256"
PLOTTER IS CRT,"S3;C805,1024x768x16"

Short Cuts
The default resolution is 640x480x256 and doesn't need to be specified.
Further, if the desired resolution is 640x480x256 and you also have a 924
chipset, no options need to be specified. Examples:

C> HTB -CRT S3;C911
PLOTTER IS CRT,"S3" !defaults to 924,640x480x256
PLOTTER IS CRT,"S3;C928" !defaults to 640x480x256

VGAB Driver
The VGA BIOS (VGAB) CRT driver uses the BIOS on the video card to output
characters, scroll the screen, and clear portions of the screen. This allows
system software that intercept the BIOS calls to display correctly. Japanese
DOS/V is one example. All other drawing functions still use the driver's internal
code for speed purposes. The only graphic mode supported by the VGAB
driver is the VGA 640x480 graphics mode with 16 colors.

In CRTB mode, the BIOS does not support character attributes. So, the key
labels are not displayed in inverse video. By default, the driver will come up in
CRTB mode. If you switch to CRTA mode, the labels will appear correctly until
you perform a drawing function, which turns GRAPHICS ON. To switch back,
use the ALPHA ON command or press the ALPHA key.

If some characters don't display correctly when you use the PRINT or LIST
commands, it may be caused by conflicts with the attribute control characters
in the range of 128 to 143. To move the attribute control characters down to
the range 16 to 31, use the following command:
CONTROL CRT,100;1

The VGAB driver requires the "MONO" option when used with a monochrome
monitor. If the MONO option is not specified, then a color monitor is assumed.
Example:
HTB -CRT VGAB;MONO

MGA, HGC, and CGA Drivers
The MGA, HGC, and CGA drivers have no options. Load any of them by directly
specifying the driver name:

C> HTB -CRT MGA
C> HTB -CRT HGC
C> HTB -CRT CGA

These drivers use the following modes. All graphic modes are monochrome.

Driver Text Mode Graphics Mode
MGA 80x25 640x400
HGC 80x25 720x348
CGA 80x25 640x200

WIN Driver
The WIN driver is a CRT driver that uses the Microsoft Windows display drivers.

For compatibility with HP BASIC/UX, options for the WIN driver are specified on
the command line. Command line switches were explained in Chapter 1.
These command line switches are passed to the WIN driver:

Switch Effect
-colors Number of Colors to Use
-cu Specify how to use color maps
-fn Use named font
-geometry Specify initial size of HTBasic window
-gr Graphics buffering
-title Specify the window title

Window Resize
Resizing the HTBasic window using the mouse is supported, but has the
following effects. If the number of text columns changes, any text present is
discarded. If in edit mode, the screen is redrawn using the new size. If the
HTBasic Window is made larger than the size of the extended output area
buffer, the size change is ignored and the text screen will be justified in the
upper-left corner of the HTBasic window. To prevent this from occurring, start
HTBasic with a -geometry switch that specifies the largest window size desired
or use the -buf switch to provide enough space in the extended output area
buffer for the largest window size desired.

Any graphics present in the window are discarded. The current pen position is
left undefined. The VIEWPORT, WINDOW and hard clip limits are unchanged,
although GESCAPE CRT,3 returns the new window size. Use the GINIT
statement to set the VIEWPORT, WINDOW and hard clip limits to the new
window size. Or use the
PLOTTER IS CRT,"INTERNAL"

statement to activate use of the new hard clip limits without the side effects of
GINIT.

Limitations
The DUMP statement is affected by graphics buffering (see the -buf switch).
When graphics buffering is off, parts of a window that are obscured or off the
edge of the screen are not dumped correctly. If the window is minimized, a
dump of the icon is returned. When graphics buffering is on, the window is
correctly dumped in all cases.

Because Windows does not allow applications to use the entire color map,

color combinations resulting from Normal and Alternate drawing modes are
undefined. This same limitation, combined with Windows lack of support for
plane oriented graphics, means SEPARATE ALPHA can not be implemented.

The standard windows VGA display driver does not allow applications to
change the color map. If your computer has SVGA capabilities, change your
Windows driver to a 256 color driver; this will allow color map operations.

XWIN Driver
The XWIN driver is a CRT driver which supports the X Window System. HTBasic
is an X Version 11, Release 4 (X11.4) client. The computer or X terminal used
for the HTBasic display must have X11.4 or later server capabilities. Because
HTBasic emulates the Rocky Mountain BASIC user interface, it is window
manager neutral. In other words, HTBasic works equally well with
OpenWindows, HP VUE, Motif Window Manager, or other window managers.

For compatibility with HP BASIC/UX, options for the XWIN driver are specified
on the command line. Command line switches were explained in Chapter 1.
These command line switches are passed on to the XWIN driver:

Switch Effect
-colors Number of Colors to Use
-cu Specify how to use X color maps
-display Use named X display
-fn Use named font
-geometry Specify initial size of HTBasic window
-title Specify the window title
-n Specify icon name

Window Resize
Resizing the HTBasic window using the mouse is supported, but has the
following effects. If the number of text columns changes, any text present is
discarded. If in edit mode, the screen is redrawn using the new size. If the
HTBasic Window is made larger than the size of the extended output area
buffer, the size change is ignored and the text screen will be justified in the
upper-left corner of the HTBasic window. To prevent this from occurring, start
HTBasic with a -geometry switch that specifies the largest window size
desired, or use the -buf switch to provide enough space in the extended
output area buffer for the largest window size desired.

Any graphics present in the X window are discarded. The current pen position
is left undefined. The VIEWPORT, WINDOW, and hard clip limits are
unchanged, although GESCAPE CRT,3 returns the new window size. Use the
GINIT statement to set the VIEWPORT, WINDOW, and hard clip limits to the
new X window size. Or use the
PLOTTER IS CRT,"INTERNAL"

statement to activate use of the new hard clip limits without changing the
present VIEWPORT or WINDOW.

HPGL Driver
The HPGL graphic output driver provides support for any output device that
accepts Hewlett Packard's HPGL language. The driver also can store the HPGL
information into a file that can be imported into a number of graphics
packages and word processors.

The minimum and maximum hard clip limits can be specified for either a
device, file or pipe. This allows you to output HPGL information to a printer
that can't return P points. If no hard clip units are specified for a device, P
points are requested from the device. If no hard clip units are specified for a
file, the default hard clip limits are -392.75, 392.75, -251.5, 251.5
(millimeters).

Polygons
The HPGL driver, for compatibility with HP BASIC, outputs polygon fills as
separate lines. However, the driver can be instructed to output HPGL/2
polygon fill commands. This is useful if the plotter supports the polygon fill
command or if an HPGL file is produced for import into another program that
supports polygons. To enable polygon mode, use GESCAPE code 104,
operation number 1:
10 INTEGER Param(1)
20 Param(0)=1 ! HPGL Operation Number 1 is HPGL/2 Flag
30 Param(1)=1 ! Set HPGL/2 Flag to 1=enable, 0=disable
40 GESCAPE Isc,104,Param(*)

If output is to a device, substitute the device ISC for Isc in line 40. If output is
to a file, substitute 1 for Isc.

HPGL2 Driver
The HPGL2 plotter driver generates HP-GL language plots from HTBasic
plotting commands. The driver supports most variations of HP-GL, including
HP-GL/2 and the printer form of HP-GL/2 included in PCL-5. The HPGL2 plotter
driver is loaded with a line like

PLOTTER IS device,"HPGL2[;options]",[p1x,p2x,p1y,p2y]

or

PLOTTER IS "file","HPGL2[;options]",[p1x,p2x,p1y,p2y]

In the above, device refers to an HTBasic device number. File refers to a file in
the computer's file system or a pipe. The file must already exist when the
PLOTTER IS statement is executed.

Plotting Area
The points (p1x,p1y) and (p2x,p2y) determine the lower left and the upper
right corners of a rectangular area the driver will plot to. These points are
specified in mm from the lower left corner of the paper. P2x and p2y must be
larger than p1x and p1y, respectively. All of these coordinates must be
positive or zero if the PCL5 option is used (see Options, below). If the plotting
area is omitted, the driver reads the plot area from the plotter, if it is
connected to a serial or IEEE-488 port. If output is directed to a file or pipe,
the driver uses the default values from the table below.

PCL5 Option Orientation (P1x,P1y) (P2x,P2y)
No Landscape (-393, -252) (393, 252)
No Portrait (-252, -393) (252, 393)
Yes Landscape (0,0) (254, 184)
Yes Portrait (0,0) (184, 254)

Options
The options are listed after the semicolon in the driver name, within the

quotes. If more than one option is specified, the option names are separated
by commas. When no options are specified, the HPGL2 driver produces the
same output as the HPGL driver. A table in the Installing and Using manual
may help in choosing from the options.    The options are as follows:

COLOR.    This option tells the driver that the device used for plotting is a
color printer with plotter functions, such as the Hewlett-Packard PaintJet XL-
300. This option is ignored unless the PCL5 option is also specified.

FILL.    This option tells the driver that the plotter being used can do area
filling. Area filling produced by the plotter is generally much faster than that
produced by the driver.

GRAY.    This option causes the driver to produce grayscale plots when used
with a printer. Each color that normally would be plotted is changed to a
brightness using the method explained in the Pen Colors section, below,
before plotting. Note that the brightness level is inverted unless the INVERT
option is also used. The GRAY option need not be specified; it is the default.
This option is ignored unless the PCL5 option is also used.

HPGL2.    By default, the driver produces plots for an HP-GL plotter. This
option allows the driver to produce plots for an HP-GL/2 plotter, such as the
Hewlett-Packard DraftMaster. Since HP-GL/2 plotters can all do area filling, the
HPGL2 option turns on the FILL option.

INVERT.    By default, the driver reverses black and white on color plots and
reverses all gray levels on grayscale plots when the plots are made on a
printer. This is suitable for printers that use dark inks on white paper, but is
the opposite of the colors normally shown on the computer screen. The
INVERT option causes colors or gray levels to be represented as they are on
the computer screen. This option is ignored unless the PCL5 option is also
used.

PCL5.    This option tells the driver that the plotter is a laser or electrostatic
printer with built-in plotter emulation using the PCL-5 language. This causes
the driver to send escape sequences at the beginning and end of plots to
enable and disable the plotter emulation. When this option is used, a PLOTTER
IS CRT,"INTERNAL" statement should be executed at the end of plotting to
make the printer eject the page containing the plot. Since all PCL-5 devices
use the HP-GL/2 plotter language, this option turns on the HPGL2 and FILL
options.

PORTRAIT.    The PORTRAIT option causes the driver to produce plots in
portrait orientation, that is, with the long edge of the paper vertical. Without
this option, the driver produces plots in landscape orientation, with the long
edge of the paper horizontal.

Pen Colors
When the HPGL2 driver is used with a pen plotter, the HTBasic PEN command
selects the indicated pen on the plotter. However, when the driver is used with
a printer (as indicated by the PCL5 option), the effect of the PEN command is
that described in the following text.

The colors or grayscales produced by each pen depend on the states of the
COLOR and INVERT options used in loading the driver, as well as the state of
the COLOR MAP option of the HTBasic CRT driver. If the COLOR MAP option is
off, the following gray levels or colors are used:

GRAY COLOR,
PEN GRAY COLOR INVERT INVERT
0 white white black black
1 black black white white
2 30% black red 70% black red
3 89% black yellow 21% black yellow
4 59% black green 41% black green
5 70% black cyan 30% black cyan
6 11% black blue 89% black blue
7 40% black violet 60% black violet
8 black black white white
9 30% black red 70% black red
10 89% black yellow 21% black yellow
11 59% black green 41% black green
12 70% black cyan 30% black cyan
13 11% black blue 89% black blue
14 40% black violet 60% black violet
15 black black white white

If the COLOR MAP option of the CRT driver is on, the plot is made using the
colors in the HTBasic color map if the COLOR option is used. If the INVERT
option is not used, black and white are reversed. If the COLOR option is not
used, the colors in the HTBasic color map are converted to shades of gray
using the NTSC equation:

brightness = 11% blue + 59% green + 30% red

If the INVERT option is not used, the brightness is inverted before plotting is
done. With both pen plotters and printers, the sign of the pen is ignored; the
absolute value determines the pen used.

Drawing Mode
When the PCL5 option is specified, the HTBasic statement GESCAPE CRT,5
sets alternate drawing mode for the driver. Normally, the driver replaces
anything previously at a location with what is currently drawn. In the alternate
drawing mode, the previous black or colored areas show through the white
areas of the new plot. The HTBasic statement GESCAPE CRT,4 returns the
driver to normal drawing mode.

Line Thickness
If the PCL5 option is specified, line thicknesses can be set in the driver. Lines
default to 0.35 mm thick. The line thickness for all pens can be changed by
the GESCAPE CRT,104 statement as in either of the examples below:
INTEGER Param(1:2) ! an array for the command
Param(1) = 10 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send thickness

INTEGER Param(1:2) ! an array for the command
Param(1) = 11 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send thickness

Line Caps and Joins
When the PCL5 option is specified, line cap and join styles can be specified. By

default, the device driver uses round caps to end lines and round joins to
connect lines, which simulates the round pens used on pen plotters. This can
be changed with the following statements.
INTEGER Param(1:3) ! an array for the command
Param(1) = 12 ! line thickness code
Param(2) = cap ! desired line cap
Param(3) = join ! desired line join
GESCAPE CRT,104,Param(*) ! set cap and join

The values for cap and join can be selected from the following tables.

cap meaning join meaning
1 butt cap 1 mitered join
2 square cap 2 mitered,

beveled if too
long
3 triangular cap 3 triangular join
4 round cap 4 round join

5 beveled join
6 no join

Note that many low-resolution PCL-5 devices use a butt cap and no join with
lines less than 0.35 mm thick, regardless of the cap and join settings.

Crosshatching
The HPGL2 driver can crosshatch areas meant to be filled. This is its default
behavior unless the FILL or PCL5 option is specified, in which case the default
is to use solid fills.

If the FILL or PCL5 options are specified, the driver can be made to crosshatch
filled areas with the following statements:
INTEGER Param(1:2) ! an array for the command
Param(1) = 1 ! set fill type
Param(2) = state ! turn solid filling on or off
GESCAPE CRT,104,Param(*) ! send command

State is 0 to use crosshatching and any other value to use solid filling. For
compatibility with older drivers, if state is nonzero, this command turns on the
FILL option if neither the FILL nor the PCL5 option was specified when the
driver was loaded.

When crosshatching is turned on, the following sets of statements can be used
to control the crosshatch parameters. If these statements are not executed,
crosshatching is done with solid horizontal lines spaced 0.01 in. (0.25 mm)
apart, which is useful on most devices for producing a solid fill.
INTEGER Param(1:2) ! an array for the command
Param(1) = 2 ! set crosshatch type
Param(2) = type
GESCAPE CRT,104,Param(*) ! send command

Type is 1 for single hatching, 2 for crosshatching.
INTEGER Param(1:2) ! an array for the command
Param(1) = 3 ! set hatch angle

Param(2) = angle ! desired angle, degrees
GESCAPE CRT,104,Param(*) ! send command

Angle is the angle in degrees (regardless of the HTBasic RAD or DEG setting)
for hatching. Angle is rounded to the nearest multiple of 45 degrees.
INTEGER Param(1:2) ! an array for the command
Param(1) = 4 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send command

INTEGER Param(1:2) ! an array for the command
Param(1) = 5 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send command

The above commands are equivalent except that in the first command,
spacing is expressed in 1/100 GDU and in the second in 1/100 mm.
INTEGER Param(1:3) ! an array for the command
Param(1) = 6 ! set line type for hatching
Param(2) = type ! desired line type for crosshatching
Param(3) = size ! desired pattern repetition size
GESCAPE CRT,104,Param(*) ! send command

Type is the type of line, as listed in the LINE TYPE section of the HTBasic
Reference Manual. Size is the pattern repetition length in 1/100 GDU's. This
would be 100 times the pattern repetition length specified in a LINE TYPE
statement.

Pages
The GCLEAR statement causes subsequent plotting to be done on a new page.
If the PCL5 option is specified, the GCLEAR statement causes the printer to
eject the old plot. Also, opening a file with
PLOTTER IS "file","HPGL";APPEND

causes the driver to append new pages of plot information to the current file if
it exists already. Note that most word processor programs and other programs
that can import files will probably superimpose the plots imported from a file
containing more than one plot.

Ending Plots
If the PCL5 option is used, the HPGL2 driver will not eject a plot until a GCLEAR
statement is executed, HTBasic is ended, or when the PLOTTER IS device is set
to a different device. It is recommended that a statement like
PLOTTER IS CRT,"INTERNAL"

be placed at the end of each program section that produces a plot using the
PCL5 option driver.

DXF Driver
The Drawing Interchange File Format (DXF) graphics output driver generates
files that can be imported into most CAD packages. The DXF file format was
developed by AutoCAD for the purpose of sharing drawings with other CAD
programs. The syntax to load the DXF graphics output driver is:

PLOTTER IS file-specifier,"DXF[;{size|resolution}]"

The file specified must already exist when the PLOTTER IS statement is
executed and it should be an ordinary file. Otherwise the HTBasic file header
will appear as bad data at the start of the file.

Size is "A", "B", "C", "D", or "E". If you need a different page size than the
above predefined sizes or you want to adjust the margins, the exact
dimensions can be specified by using the resolution option. Resolution is
"Xmin,Xmax,Ymin,Ymax", where each value is specified in hundredths of
inches. If no options are specified, then the driver defaults to a B size page
(11" x 17"). Either the size or resolution option can be specified, but not both.
All lines drawn by HTBasic will stay within the hard clip limits specified. The
following table gives the dimensions for the predefined page sizes.

Page Size Dimension
A 11" x 8.5"
B 17" x 11"
C 22" x 17"
D 34" x 22"
E 44" x 34"

This sample program creates a DXF file:
 10 CREATE "TMP.DXF",0
 20 PLOTTER IS "TMP.DXF","DXF;50,800,50,1050"
 30 !
 40 FRAME
 50 MOVE 0,0
 60 DRAW 50,50
 70 LABEL "HTBasic"
 80 !
 90 PLOTTER IS CRT,"INTERNAL"
100 END

PostScript Driver
The PostScript graphics output driver generates PostScript-language files from
HTBasic plotting commands. These files are suitable for printing on PostScript-
language printers and photographic equipment and for importing into
documents using the PostScript file format. The PostScript graphics output
driver is loaded with the following statement:

PLOTTER IS destination,"PS[;options]",[p1x,p2x,p1y,p2y]

Destination refers to a device, file or pipe. If it is a file, the file must already
exist when the PLOTTER IS statement is executed and it should be an ordinary
file. Otherwise the HTBasic file header will appear as bad data at the start of
the file.

The points (p1x,p1y) and (p2x,p2y) determine the lower left and the upper
right corners of a rectangular area the driver will plot to. These points are
specified in mm from the lower left corner of the paper. All of these
coordinates must be positive or zero and p2x and p2y must be larger than p1x
and p1y, respectively. If omitted, the driver uses (p1x,p1y) = (25.4 mm, 25.4
mm) and (p2x,p2y) = (262.7 mm, 190.5 mm) in landscape mode and
(p2x,p2y) = (190.5 mm, 262.7 mm) in portrait mode, which produces a plot
with adequate margins on US "A" or European A4 size paper. Note that most

PostScript printers cannot print to the edges of the paper. Because of this, the
points specified should include a small (about 1 cm) margin on each side
when the driver is used with a printer.

Options
The options are listed after the semicolon in the driver name, within the
quotes. If more than one option is specified, the option names are separated
by commas. The options are as follows:

COLOR.    This option causes the driver to produce color plots. Note that black
and white are inverted from their values on the screen unless the INVERT
option is also used. Color plots require a PostScript level 2 output device or a
PostScript level 1 device with color language extensions.

GRAY.    This option causes the driver to produce grayscale plots. Each color
that normally would be plotted is changed to a brightness using the method
explained in the Pen Colors section, below, before plotting. Note that the
brightness level is inverted unless the INVERT option is also used. The GRAY
option need not be specified; it is the default.

INVERT.    By default, the driver reverses black and white on color plots and
reverses all gray levels on grayscale plots. This is suitable for printers that use
dark inks on white paper, but is the opposite of the colors normally shown on
the computer screen. The INVERT option causes colors or gray levels to be
represented as they are on the computer screen.

PORTRAIT.    The PORTRAIT option causes the driver to produce plots in
portrait orientation, that is, with the long edge of the paper vertical. Without
this option, the driver produces plots in landscape orientation, with the long
edge of the paper horizontal.

Pen Colors
The colors or grayscales produced by each pen depend on the states of the
COLOR and INVERT options used in loading the driver, as well as the state of
the COLOR MAP option of the HTBasic CRT driver. If the COLOR MAP option is
off, the following gray levels or colors are used:

GRAY COLOR,
PEN GRAY COLOR INVERT INVERT
0 white white black black
1 black black white white
2 30% black red 70% black red
3 89% black yellow 21% black yellow
4 59% black green 41% black green
5 70% black cyan 30% black cyan
6 11% black blue 89% black blue
7 40% black violet 60% black violet
8 black black white white
9 30% black red 70% black red
10 89% black yellow 21% black yellow
11 59% black green 41% black green
12 70% black cyan 30% black cyan
13 11% black blue 89% black blue
14 40% black violet 60% black violet
15 black black white white

If the COLOR MAP option of the CRT driver is on, the plot is made using the
colors in the HTBasic color map if the COLOR option is used. If the INVERT
option is not used, black and white are reversed. If the COLOR option is not
used, the colors in the HTBasic color map are converted to shades of gray
using the HTSC equation:

brightness = 11% blue + 59% green + 30% red

If the INVERT option is not used, the brightness is inverted before plotting is
done. GESCAPE codes 4 and 5 are ignored as is the sign of the PEN. Graphics
always overwrite existing graphics.

Line Thickness
Lines default to 0.35 mm thick. The line thickness can be changed by the
GESCAPE CRT,104 statement as in either of the examples below:
INTEGER Param(1:2) ! an array for the command
Param(1) = 10 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send thickness

INTEGER Param(1:2) ! an array for the command
Param(1) = 11 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send thickness

Line Caps and Joins
By default, the device driver uses round caps to end lines and round joins to
end lines, which simulates the round pens used on pen plotters. This can be
changed with the following statements.
INTEGER Param(1:3) ! an array for the command
Param(1) = 12 ! set line cap and join
Param(2) = cap ! desired line cap
Param(3) = join ! desired line join
GESCAPE CRT,104,Param(*) ! set cap and join

The values for cap and join can be selected from the following tables.

cap meaning join meaning
1 butt cap 1,2 mitered join,

beveled if too
long
2 square cap 3,4 round join
3,4 round cap 5,6 beveled join

Crosshatching
By default, the PostScript plotter driver fills areas with shades of gray or color
(if the COLOR option has been specified). The driver can be made to
crosshatch filled areas with the following statements.
INTEGER Param(1:2) ! an array for the command
Param(1) = 1 ! set fill type
Param(2) = state ! turn solid filling on or off
GESCAPE CRT,104,Param(*) ! send command

State is 0 to use crosshatching and any other value to use solid filling.

When crosshatching is turned on, the following sets of statements can be used
to control the crosshatch parameters. If these statements are not executed,
crosshatching is done with solid horizontal lines spaced 0.01 in. (0.4 mm)
apart.
INTEGER Param(1:2) ! an array for the command
Param(1) = 2 ! set crosshatch type
Param(2) = type
GESCAPE CRT,104,Param(*) ! send command

Type is 1 for single hatching, 2 for crosshatching.
INTEGER Param(1:2) ! an array for the command
Param(1) = 3 ! set crosshatch angle
Param(2) = angle ! desired angle, degrees
GESCAPE CRT,104,Param(*) ! send command

Angle is the angle in degrees (regardless of the HTBasic RAD or DEG setting)
for hatching. Angle is rounded to the nearest integer.
INTEGER Param(1:2) ! an array for the command
Param(1) = 4 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send command

INTEGER Param(1:2) ! an array for the command
Param(1) = 5 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send command

The above commands are equivalent except that in the first command,
spacing is expressed in 1/100 GDU and in the second in 1/100 mm.
INTEGER Param(1:3) ! an array for the command
Param(1) = 6 ! set line type for hatching
Param(2) = type ! desired line type
Param(3) = size ! desired pattern repetition size
GESCAPE CRT,104,Param(*) ! send command

Type is the type of line, as listed under the LINE TYPE topic in the HTBasic
Reference Manual. Size is the pattern repetition length in 1/100 GDU's. This
would be 100 times the pattern repetition length specified in a LINE TYPE
command.

Pages
The GCLEAR statement causes subsequent plotting to be done on a new page.
The driver inserts a PostScript "%%Page" comment at the beginning of each
page. The comments are used by some print spooling software. Also, opening
a file with
PLOTTER IS "file","PS";APPEND

causes the driver to append new pages of plot information to the current file if
it exists already. Since the driver doesn't know how many pages are already in
the file, it begins its "%%Page" comments with page 1. This may cause
problems with some print spooling software.

Ending Plots
The PostScript language requires information at the end of a plot to cause the
plot to be printed. This information is output when the GCLEAR statement is
executed, HTBasic is exited, or when the PLOTTER IS device is set to a
different device. It is recommended that a statement like
PLOTTER IS CRT,"INTERNAL"

be placed at the end of each program section that produces a plot using the
PostScript driver.

Dual Monitors (DOS Version)
HTBasic can support two monitors and switch back and forth between them.
One of the displays needs to be monochrome and the other color. This
eliminates any conflicts with the display memory on each video card. The
PLOTTER IS statement is used to switch between the two monitors. Each time
that a switch is made the new display is initialized, causing a loss of any text
and graphics.

If an EGA or VGA is present, it will be favored as the default display when
HTBasic starts. If no EGA/VGA is present, the default display will be the current
DOS display. MODE MONO and MODE CO80 are the DOS commands to switch
between the displays.

The following example shows how to switch between a VGA & HGC display.
10 PLOTTER IS CRT,"VGA"
20 FRAME
30 DRAW 50,50
40 PLOTTER IS CRT,"HGC"
50 FRAME
60 DRAW 50,50
70 PLOTTER IS CRT,"VGA"
80 END

CRTA and CRTB Modes
Some CRT drivers (such as the EGA and VGA drivers) are capable of two
modes of operation, CRTA and CRTB. Specifying interface select code 3 in the
PLOTTER IS statement selects CRTA mode. The CRTA mode uses a true text
mode to display the ALPHA screen. Specifying 6 selects CRTB mode. The CRTB
mode uses bits written into a graphics screen to display the ALPHA screen.
Specifying 1 or CRT in the PLOTTER IS statement reselects the last mode used.

The XWIN driver only supports CRTB mode. If you use CRTA mode on the PC or
a series 200 BASIC workstation, this limitation may be confusing. Please read
the material in Chapter 2, "Porting HP BASIC Programs to HTBasic," of the
HTBasic User's Guide. Briefly, CRTA mode uses a true text mode to display the
ALPHA screen. The CRTB mode uses bits written into a graphics screen to
display the ALPHA screen.

CRTB Mode
On an EGA or VGA display adapter HTBasic uses the CRTB driver by default.
Use PLOTTER IS 6 and SEPARATE ALPHA to emulate a 9836C program that
uses both alpha and graphics output. Use PLOTTER IS 6 with MERGE ALPHA
to emulate the default state of a Series 300 bit-mapped display. MERGE and
SEPARATE can be used with the CRTB driver as explained in the entries for

those statements in this manual. MERGE ALPHA is the default for the CRTB
driver.

CRTA Mode
On a CGA or HGC display adapter HTBasic can only use the CRTA driver. The
CRTB driver cannot be used on these adapters because only one graphics
plane is present. Use PLOTTER IS 3 to emulate a 9836C program that uses
only alpha output. PLOTTER IS 3 can also be used to speed up Series 300
programs that only use alpha output.

Unfortunately, the hardware of the CGA and HGC display adapters does not
support complete CRTA emulation. Unlike the 9836, which has fully
independent ALPHA and GRAPHICS display capabilities, these display adapters
use the same display memory for both text and graphics modes. When in a
text mode, the display hardware maps the display memory as characters.
When in a graphics mode, the display hardware re-maps the same display
memory as pixels. This means that whenever a switch is made between
modes, the contents of the other screen are lost.

The CRTA driver tries to overcome these hardware deficiencies in the following
manner:    in the graphics mode both GRAPHICS and ALPHA text are written
into the graphics bitmap. The graphics image is lost when switching from
graphics mode to text mode and back again. The ALPHA text is not lost, but is
re-written into display memory after each mode switch. Because of these
deficiencies, if you have an EGA or VGA display adapter, the CRTB driver is
used by default. Use the SEPARATE ALPHA command with the CRTB driver to
give the best 9836C emulation.

Driver Loading
Up to ten graphic and dump drivers can be loaded at a time. It is
recommended that for each driver needed, PLOTTER IS statements be
included in your AUTOST file to load them.

DOS Version
Under DOS, drivers can only be loaded while in the MAIN subprogram. (Drivers
also can be loaded in immediate mode when the BASIC RUNLIGHT is Idle.) To
find the driver file, HTBasic takes the language specified in the PLOTTER IS
statement and performs several operations upon it in order to find the correct
driver file. Under the DOS version, ".D36" is appended to the name. Then the
following three locations are searched, in the following order:

1. The directory specified by the HTB environment variable, if an HTB
environment variable exists.
2. The current directory.
3. The directory containing the HTBasic executable.

Windows Version
Under Windows and NT, driver files can be loaded at any point. To find the
driver file HTBasic takes the driver specified in the PLOTTER IS statement
and performs several operations upon it to find the correct file. ".DW6" is
appended to the name. Then the following locations are searched, in the
specified order:

1. The directory containing the HTBasic executable.
2. The current directory.
3. The Windows system directory (such as \WINNT\SYSTEM32).

4. The Windows directory.
5. The directories listed in the PATH environment variable.

UNIX Versions
Under UNIX, driver files are linked into the HTBasic executable. The PLOTTER
IS statement can be executed at any time.

Porting Issues
Both HP BASIC and HTBasic do an implicit PLOTTER IS assignment for you if
you attempt to use graphic statements before an explicit PLOTTER IS. The
difference is that HTBasic does the implicit PLOTTER IS as soon as HTBasic is
started and HP BASIC waits until the first graphic statement is executed. The
only known effect of the different approaches is that under HP BASIC, a
SYSTEM$("PLOTTER IS") returns "0" until the first graphic statement is
executed and HTBasic returns the correct value anytime.

HP BASIC supports only "INTERNAL" and "HPGL" graphic languages. HTBasic
supports loadable graphic device drivers so it is not limited to these two
choices. HTBasic also allows clip-limits to be specified when output is directed
to a device, allowing use of plotters or printers that are incapable of returning
p-points. Do not use HTBasic extensions if you wish to execute the same
program with HP BASIC.

See Also:
COLOR, CONFIGURE DUMP, DUMP DEVICE IS, GRAPHICS INPUT IS, SET PEN

POLYGON
Draws a closed regular polygon, circle, or ellipse.
Syntax: POLYGON radius [,total-chords [,draw-chords]] [,FILL] [,EDGE]

Sample: POLYGON Radius,Totside,Drawside
POLYGON -Figure,7,FILL,EDGE
POLYGON 30,65,50

Description:
The POLYGON statement generates variable sided polygons or circles. The
pen starts and ends a POLYGON execution in the same position and after
execution the pen is up. The radius is the distance between the logical pen
position and the polygon vertices where the first vertex is in the positive X
axis direction. A negative radius will rotate the POLYGON 180 degrees.

The total number of chords is rounded to an integer and must be in the range
3 to 32,767. If not specified, sixty chords are drawn.

The optional number of chords to draw is rounded to an integer and must be
in the range of one to 32,767. If not specified all chords are drawn.

If the number of chords drawn are less than the specified total number of
chords, the polygon closure is affected. If the pen is up when the POLYGON
statement is executed, the polygon is closed by drawing the last vertex to the
first vertex. If pen is down, the polygon is closed by drawing the last vertex to
the center of the polygon and then drawing from the center to the first vertex.

The polygon can be filled with the current AREA color and edged with the
current PEN color and LINE TYPE. If neither are specified EDGE is assumed.

The PIVOT statement affects the POLYGON statement.

See Also:
MOVE, DRAW, PIVOT, PLOT, POLYLINE, RECTANGLE

POLYLINE
Draws an open regular polygon.
Syntax: POLYLINE radius [,total-chords [,draw chords]]

Sample: POLYLINE 65,50,45
POLYLINE Radius,Chordtot,Chord
POLYLINE -Size,5

Description:
The POLYLINE statement generates variable sided polygons or circles. The
pen starts and ends a POLYLINE execution in the same position and after
execution the pen is up.

The radius is the distance between the logical pen position and the polygon
vertices where the first vertex is in the positive X-axis direction. A negative
radius will rotate the POLYGON 180 degrees.

The total number of chords is rounded to an integer and must be in the range
3 to 32,767. If not specified, sixty chords are drawn.

The optional number of chords to draw is rounded to an integer and must be
in the range of one to 32,767. If not specified all chords are drawn.

If the number of chords drawn are less than the specified total number of
chords, the polygon is not closed. If the pen is up when the POLYLINE
statement was executed, the first vertex is on the perimeter. If the pen is
down when the POLYLINE statement was executed, the first point (logical pen
position) is drawn to the first point on the perimeter.

The PIVOT statement affects the POLYLINE statement.

See Also:
MOVE, DRAW, PIVOT, PLOT, POLYGON, RECTANGLE

POS
Returns the position of one string within another.
Syntax: POS(search-string, match-string)

where: search-string and match-string = string-expressions.

Sample: I=POS(A$,B$)
IF POS(A$,B$(5)) THEN Start
P=POS(A$,"PN")
Hyphen=POS(Txt$,"-")
ON POS(Fk$,Key$) GOSUB 1000,2000,3000

Description:
The POS function returns the character position in the search-string of a
match-string. A value of zero is returned if the match-string is not found in the
search-string or if the match-string has a zero length.

If a sub-string is specified for the search-string, the position returned is the
position from the beginning of the sub-string not from the beginning of the full
string.

See Also:
CHR$, LWC$, NUM, REV$, RPT$, TRIM$, UPC$, VAL, VAL$

PPOLL
Conducts an IEEE-488 Parallel Poll and returns status.
Syntax: PPOLL({@io-path | interface-select-code})

Sample: PPOLL(8)
PPOLL(@Gpib)
IF BIT (PPOLL(10),3) THEN Start

Description:
A IEEE-488 parallel poll is performed and an 8-bit status message from the
IEEE-488 bus is returned. If the computer is not the active controller an error is
generated. The I/O path or interface select code must refer to the IEEE-488
interface.

The bus action is as follows: ATN and EOI are set for ³25 microsec., one byte
of data is read from the bus, EOI is released, and ATN is restored to its
previous state.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND,
SPOLL, TRIGGER

PPOLL CONFIGURE
Configures remote IEEE-488 device parallel poll response.
Syntax: PPOLL CONFIGURE {@io-path | device-selector} ; configure-byte

Sample: PPOLL CONFIGURE 701;1
PPOLL CONFIGURE 702;3
PPOLL CONFIGURE @Dev;Sense

Description:
The device specified by the I/O path or the device selector is configured for a
parallel poll response. If the computer is not the active controller an error is
generated. The I/O path or device selector must refer to one or more IEEE-488
devices.

The configure byte is a numeric-expression rounded to an integer in the range
zero to fifteen. The three least significant bits of its binary representation
select the data bus line and the fourth bit selects the logical sense of the
response.

The bus action is as follows: ATN, MTA, UNL, LAG, PPC, PPE.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND,
SPOLL, TRIGGER

PPOLL RESPONSE
Configures local IEEE-488 device parallel poll response.
Syntax: PPOLL RESPONSE {@io-path | interface-select-code} ; service

Sample: PPOLL RESPONSE Isc;Answer
PPOLL RESPONSE @Gpib;1

Description:
This statement enables or disables this device to respond to a parallel poll
request from the IEEE-488 bus active controller. If an I/O path is specified, it
must refer to the IEEE-488 interface. A service value of zero disables the
parallel poll response, whereas a value of one enables the parallel poll
response. The device must be configured for a parallel poll response with the
PPOLL CONFIGURE command. It specifies which bus data bit to respond on
and the logical sense of the response.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND,
SPOLL, TRIGGER

PPOLL UNCONFIGURE
Disables the parallel poll response of a specified device or devices.
Syntax: PPOLL UNCONFIGURE {@io-path | device-selector}

Sample: PPOLL UNCONFIGURE 5
PPOLL UNCONFIGURE @Dev

Description:
The device specified by the I/O path or the device selector is unconfigured for
a parallel poll response. If the computer is not the active controller an error is
generated. The I/O path or device selector must refer to one or more IEEE-488
devices.

If a primary device address is specified the bus action is: ATN, MTA, UNL, LAG,
PPC, PPD; otherwise the bus action is: ATN, PPU.

See Also:
CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL,
TRIGGER

PRINT
Outputs data to the PRINTER IS device.
Syntax: PRINT [items [{,|;}]]

PRINT USING image [;items]

where: items = item [{,|;} item [{,|;} item...]]
item = numeric-expression | numeric-array(*) |
string-expression | string-array$(*) |
TAB(crt-column) | TABXY(crt-column,crt-row)
image = line-number | line label | string-expression
See IMAGE for image syntax.

Sample: PRINT "Test Number ";N;
PRINT Values(*)
PRINT String$[1,8],TAB(12),Result
PRINT TABXY(1,1),Title$,TABXY(Col,3),Par$
PRINT USING 1040;R1,R2,R3
PRINT USING Fmt;Ssn,Item$,Weight

Description:
PRINT sends numeric data, array elements or character strings to the
PRINTER IS device. The default PRINTER IS device is the CRT. The output may
optionally be formatted with the USING image.

Unless USING is specified, numeric items are printed in standard numeric
format. If the absolute value is in the range 1E-4 to 1E+6, it is rounded to
twelve digits and printed in floating point form. Otherwise the number is
printed in scientific notation.

If USING is not specified, then the punctuation following the item determines
the item's print field width and suppresses the automatic EOL sequence. The
compact field is used if a semicolon follows the item; and the default print
field is used if a comma follows the item.

In both compact and default print form, numeric numbers are printed with one
leading blank for positive numbers or the minus sign for negative numbers. In
compact field form numeric items are printed with one trailing blank and
string items are printed with no leading or trailing blanks. The default print
field form prints items with trailing blanks to fill to the beginning of the next
ten character field.

A complex number is printed in rectangular form, first the real part, then an
extra space and finally the imaginary part.

Arrays
A full array may be printed in row-major order using the full array specifier,
"(*)". If a semi-colon follows an array then the array elements are printed in
compact fields. If a comma follows an array then default print fields are used.
Additionally the automatic EOL sequence will be suppressed if either a semi-
colon or a comma is used.

TAB/TABXY
The TAB function positions the next print character on the print line using the
following equation: TAB column_position = ((column - 1) MOD screenwidth) +
1. The TABXY function positions the next print character on the CRT with X

(column) and Y (row) coordinates. TABXY(1,1) specifies the upper-left of the
CRT. A zero value for either argument specifies the current value for that
argument.

If the CRT is not the PRINTER IS device, TABXY is ignored. TAB and TABXY
can not be used with USING.

End-Of-Line
At the end of the list of items to PRINT, an EOL is sent to the PRINTER IS
device. This can be suppressed by using trailing punctuation. EOL is also sent
when the print position reaches the WIDTH    of the printer. WIDTH and the EOL
characters can be defined with the PRINTER IS command. The default WIDTH
is the width of the screen or window, and the default EOL is CR/LF (CHR$(13)
& CHR$(10)).

Control Characters
The following control characters have a special meaning when used in PRINT
statements when the CRT is the PRINTER IS device:

Character Meaning
CHR$(7) Ring the bell.
CHR$(8) Moves print cursor back one space.
CHR$(10) Moves print cursor down one line.
CHR$(12) Prints two line-feeds, scrolls output area

buffer so next item goes to the top of the CRT.
CHR$(13) Moves print cursor to column one.

Character Meaning
CHR$(128) All enhancements off.
CHR$(129) Inverse mode on.
CHR$(130) Blinking mode on.
CHR$(131) Inverse and Blinking modes on.
CHR$(132) Underline mode on.
CHR$(133) Underline and Inverse modes on.
CHR$(134) Underline and Blinking modes on.
CHR$(135) Underline, Inverse, & Blinking modes on.

Character Meaning
CHR$(136) White
CHR$(137) Red
CHR$(138) Yellow
CHR$(139) Green
CHR$(140) Cyan
CHR$(141) Blue
CHR$(142) Magenta
CHR$(143) Black

All other characters less than CHR$(32) are ignored. To print, rather than
ignore, the characters in this range, use DISPLAY FUNCTIONS.

If some characters don't display correctly when you use the PRINT or LIST
commands, it may be caused by conflicts with the attribute control characters
in the range of 128 to 143. To move the attribute control characters from the
range 128 to 143 down to the range 16 to 31, use the following command:
CONTROL CRT,100;1

With USING
See IMAGE for a complete explanation of the image list. The items specified in
the image list are acted upon as they are encountered. Each image list item
should have a matching print item. Processing of the image list stops when no
matching print item is found. Conversely, the image list is reused starting at
the beginning to provide matches for all remaining print items. FORMAT ON is
used in connection with PRINT USING, even if FORMAT OFF has been
specified.

Porting to HP BASIC
CONTROL CRT, 100 is a new HTBasic feature that is not available in HP BASIC.
It should not be used in programs that must be ported back to HP BASIC.

See Also:
ALPHA, IMAGE, INPUT, OUTPUT, READ

PRINT LABEL
Assigns a name to a data storage volume.
Syntax: PRINT LABEL volume-label [TO volume-specifier]

Sample: PRINT LABEL "Officevol" TO "A:"
PRINT LABEL Vlabel$ TO Vol$

Description:
The volume label string is written to the specified device as the new label,
overriding any previous volume label

Under DOS, Windows and NT this command is not supported. Use the DOS/NT
LABEL command instead. The following example labels the floppy disk in drive
A:
EXECUTE "LABEL A: WORKDISK"

Under UNIX, this command is not supported.

See Also:
CAT, COPY, CREATE, INITIALIZE, MASS STORAGE IS, PROTECT, PURGE, READ
LABEL, RENAME, SYSTEM$("MSI")

PRINT PEN
Selects the pen color used for the output area and DISP line.
Syntax: PRINT PEN pen-number

Sample: PRINT PEN Value
PRINT PEN 1
IF Green THEN PRINT PEN 2

Description:
This statement overrides any ALPHA PEN statement that may be in effect. The
pen-number is a numeric expression rounded to an integer. If you are using
CRTB, the bit-mapped display driver mode, legal values are from 0 to 15. (HP
BASIC supports values to 255.) If you are using CRTA, the non-bit-mapped
display driver mode, legal values are from 136 to 143. This statement is
equivalent to CONTROL CRT,15;pen-number.

See Also:
COLOR, ALPHA PEN, KBD LINE PEN, KEY LABELS PEN

PRINTALL IS
Assigns a logging device for operator interaction and error messages.
Syntax: PRINTALL IS destination [;attributes]

where: destination = device-selector | file-specifier | pipe-specifier
attributes = attribute [,attribute ...]
attribute = WIDTH {OFF|line-width} |
EOL end-of-line [END] [DELAY seconds] | EOL OFF |
APPEND
end-of-line = string-expression, evaluating to a string
of eight characters or less.
seconds = numeric-expression, rounded to the timing
precision of the computer clock
line-width = numeric-expression, rounded to an integer

Sample: PRINTALL IS Centronix
PRINTALL IS PRT;EOL CHR$(10) & CHR$(13) DELAY .5
PRINTALL IS Dev;WIDTH 120,EOL A$ END

Description:
PRINTALL IS defines where to send output from print-all mode. When print-all
mode is on, all messages output to the screen (including output area, DISP
line, keyboard line and message line) are also output to the PRINTALL device.
When print-all mode is off, output appears only in the normal places, and no
information is sent to the PRINTALL target. The PRINTALL device is the CRT
after start-up and SCRATCH A.

The print-all mode is toggled between on and off each time the PRT ALL key is
pressed. STATUS(KBD,1) returns a 1 if print-all mode is on and 0 if it is off. A
program can turn print-all mode on with CONTROL KBD,1;1 and off with
CONTROL KBD,1;0.

Print-all is a powerful debugging tool. Use it in connection with TRACE to print
TRACE messages about program execution. Also, certain error conditions can
produce more than one line of output. Only the last message is visible on the
message line. With print-all on, all the messages can be read on the
PRINTALL device.

Destinations
The output can be sent to a device (usually a printer), a file or a pipe. If the
destination is a file, it must be an existing ordinary file or a BDAT file.

Sent to a printer, PRINTALL allows permanent logging of output.

Pipes are supported under UNIX, but not DOS. A pipe-specifier must begin with
the "|" pipe character and is followed by a command to start the process that
receives the output.

Attributes
The EOL attribute specifies a new end-of-line string of up to eight characters.
The END attribute specifies an EOI to be sent with the last character of the
EOL string. The DELAY attribute specifies a time to wait after sending the EOL
string and before continuing with program execution. The delay is in seconds
and should be in the range 0.001 to 32.767 but is rounded to the timing
resolution of the computer. The OFF attribute returns the EOL string to the

default CR/LF, no EOI and no DELAY.

The WIDTH attribute specifies the maximum number of characters sent to the
printing device before an automatic EOL sequence is sent. If WIDTH OFF is
specified, the width is set to infinity. WIDTH OFF is the default.

If APPEND is specified and output is to a file, the file position is moved to the
end-of-file before any data is sent to the file. If APPEND is not specified, the
file contents are replaced with new data.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN,
ERROR SUBEXIT, TRACE, XREF

PRINTER IS
Specifies the system printing device.
Syntax: PRINTER IS destination [;attributes]

where: destination = device-selector | file-specifier | pipe-specifier
attributes = attribute [,attribute ...]
attribute = WIDTH {OFF|line-width} |
EOL end-of-line [END] [DELAY seconds] | EOL OFF |
APPEND
end-of-line = string-expression, evaluating to a string
of eight characters or less.
seconds = numeric-expression, rounded to the timing
precision of the computer clock
line-width = numeric-expression, rounded to an integer

Sample: PRINTER IS 701
PRINTER IS "Myfile";WIDTH 80
PRINTER IS 12;EOL A$ DELAY .5
PRINTER IS Dev;WIDTH 120,EOL My$ END

Description:
PRINTER IS specifies the destination for all PRINT, CAT and LIST statements
which do not specify a destination. The PRINTER device is the CRT at start-up
and after SCRATCH A.

Destinations
The output can be sent to a device (usually a printer), a file or a pipe. If the
destination is a file, it must be an existing ordinary file or a BDAT file. If a file is
specified, it is positioned to the beginning (unless APPEND is specified) and
closed when another PRINTER IS or SCRATCH A statement is executed.

Pipes are supported under UNIX, but not DOS. A pipe-specifier must begin with
the "|" pipe character and is followed by a command to start the process that
receives the output.

Attributes
The EOL attribute specifies a new end-of-line string of up to eight characters.
The END attribute specifies an EOI to be sent with the last character of the
EOL string. The DELAY attribute specifies a time to wait after sending the EOL
string and before continuing with program execution. The delay is in seconds
and should be in the range 0.001 to 32.767, but is rounded to the timing
resolution of the computer. The OFF attribute returns the EOL string to the
default CR/LF, no EOI and no DELAY.

The WIDTH attribute specifies the maximum number of characters sent to the
printing device before an automatic EOL sequence is sent. If WIDTH OFF is
specified, the width is set to infinity. If WIDTH is not specified, it defaults to
the width of the screen.

If APPEND is specified and output is to a file, the file position is moved to the
end-of-file before any data is sent to the file. If APPEND is not specified, the
file contents are replaced with new data.

See Also:

CAT, IMAGE, LIST, PRINT

PROTECT
Changes file attributes.
Syntax: PROTECT file-specifier,protect-code

Sample: PROTECT Mine$,"H"
PROTECT Name$,"R"

Description:
The PROTECT command differs from HP BASIC's PROTECT command. Under
operating systems, like DOS, which do not support file passwords, the protect
code is an operating system dependent string giving the file protections to be
assigned to the file.

DOS (FAT) File System
For versions that use the DOS (FAT) file system, PROTECT is used to set file
attributes. Three attributes are supported: read-only, system and hidden. The
protect-code should be a numeric expression which contains zero, one or more
of the characters "R", "S" and "H". Any attributes specified are turned on, any
attributes not specified are turned off. For example:
PROTECT "file1","" ! turn off all attributes
PROTECT "file2","S" ! System, but not R or H

UNIX Usage Notes
This statement is not used under UNIX. Use PERMIT.

See Also:
CAT, CHECKREAD, COPY, CREATE, INITIALIZE, MSI, PRINT LABEL PURGE, READ
LABEL, RENAME, SYSTEM$("MSI")

PROUND
Rounds the argument to the specified power of ten.
Syntax: PROUND(numeric-expression, power-of-ten)

Sample: Logic=PROUND(Express,-2)
PRINT PROUND(Amount,Degree)

Description:
The power-of-ten is a numeric expression, which is rounded to an integer. It
specifies the digit position where the number should be rounded. Positive
values are to the left of the decimal point and negative values are to the right.
For example, PROUND(PI,0) rounds to the nearest integer (10^0) and
PROUND(PI,-2) rounds to the nearest hundredth (10^(-2)).

See Also:
CINT, DROUND, FIX, FRACT, INT, REAL

PRT
Returns the default device selector for the printer.
Syntax: PRT

Sample: PRINTER IS PRT
PRINT "Default PRT is",PRT

Description:
The PRT function returns a constant representing the conventional printer
interface select code. PRT exists to provide a useful mnemonic for the most
common device selector for a printer. While PRT returns the conventional
device selector for a printer, any legal device selector may be used in place of
PRT in the PRINTER IS command (see PRINTER IS). The following are several
common examples:
PRINTER IS 9 !serial printer
PRINTER IS CRT !the display
PRINTER IS 70102 !2 IEEE-488 printers

DOS, Windows and NT
Under DOS and Windows, PRT returns the constant 10. This is different from
HP BASIC, which returns the constant 701. On the PC, most printers are
connected to the parallel printer port, making 10 the most common printer
device selector. With HP BASIC, most printers are connected to the HP-IB
interface and have a primary address of 1, making 701 the most common
printer device selector. To provide compatibility with existing software, the
HTBasic PRT can be redefined to 701 (or any other value) with the
CONFIGURE PRT statement.

UNIX Usage Notes
Under UNIX, the default value of PRTis 701.

See Also:
CONFIGURE PRT, CRT, KBD, PRINTER IS

PURGE
Deletes a file or a directory on a mass storage media.
Syntax: PURGE { file-specifier | path-specifier }

Sample: PURGE "Work"
PURGE "ADir/BDir/Cdir"

Description:
The PURGE statement is used to delete a file or a directory. All data in the file
is lost when the file is file is purged. PURGE will not delete a directory unless
there are no files in that directory (except "." and ".."). The directory can not
be the root directory and it can not be the current directory.

DOS Usage Notes
Under DOS, a file can not be deleted if it has the read-only attribute. Use the
PROTECT statement to clear the attribute before deleting the file. A directory
can be deleted, even if it is read-only.

DOS does not have a documented behavior for deletion of an open file. In
several tests, DOS 5.0 allowed the deletion, but created lost allocation clusters
as a side-effect. DOS allowed subsequent file operations on the purged, open
file, but returned an error when the file was closed. To avoid this behavior,
include the DOS SHARE command in your AUTOEXEC.BAT file. When SHARE is
installed, DOS returns an error if an attempt is made to delete an open file.

Windows and NT
If the Windows Version of HTBasic is executed by Windows running on DOS,
the previous comments about DOS apply. If the Windows version is executed
by Windows NT, the following comments apply. Neither a file nor a directory
can be deleted if it has the read-only attribute. Use the PROTECT statement to
clear the attribute before deleting the file. Windows NT does not allow an open
file to be deleted.

To delete a file or directory from an NTFS or HPFS file system, you must have
the proper permissions.

UNIX Usage Notes
Under UNIX, PURGE removes the directory entry for the file or directory
whose name is given and decrements the link count of the file or directory
referred to by that entry. If the entry is the last LINK and no process has it
open, then all resources associated with the file or directory are reclaimed. If
the file is open in any process, the actual resource reclamation is delayed until
it is closed, even though the directory entry has disappeared. If the directory
is open in any process, the "." and ".." entries are removed and no new entries
may be created in the directory, but the directory is not removed until all
references to the directory have been closed.

To delete a file or directory you must have write permission in the parent
directory and search permission in all directories in the path of the file or
directory.

Under HP-UX, getprivgrp and Access Control Lists (ACLs) capabilities can affect
execution of this statement as well. See the proper manuals for information.

See Also:

CAT, COPY, CREATE, INITIALIZE, LINK, MASS STORAGE IS, PRINT LABEL ,
PROTECT, READ LABEL, RENAME, SYSTEM$("MSI")

QUIT
Quits BASIC and returns to the operating system.
Syntax: QUIT

Sample: QUIT

Description:
QUIT is used to leave the BASIC programming environment and return to the
computer's operating system. If the program is in a paused state a STOP is
automatically executed to close any open files before quitting.

Most operating systems allow the use of a batch file, command file, or shell
script. Also, most operating systems allow such a file to be executed
automatically when the power is turned on. Using this feature, your computer
can be set up to run HTBasic automatically when you turn the power on or log
in to your computer. QUIT, used in connection with your operating system
provides an enormous amount of flexibility. Please read your operating system
manuals for an explanation of batch, command or script files.

See Also:
EXECUTE

RAD
Sets the trigonometric mode to radians.
Syntax: RAD

Sample: RAD

Description:
All angle arguments and functions that return an angle measurement use the
current trigonometric mode which can be either radians or degrees. RAD sets
the trigonometric mode to radians. The default trigonometric mode at start-up
or after a SCRATCH A is radians. A subprogram will use the same trigonometric
mode as its caller unless it executes a RAD or DEG statement. Upon returning
to the caller the previous trigonometric mode is restored.

See Also:
ACS, ASN, ATN, COS, DEG, RAD, SIN, TAN

RANDOMIZE
Selects a seed for the RND function.
Syntax: RANDOMIZE [seed]

Sample: RANDOMIZE
RANDOMIZE Seed*PI

Description:
The random number generator starting point is set to the user specified value.
If no value is specified, the starting point is chosen at random. The seed value
is a numeric expression rounded to an integer. If it is less than one, a value of
one is used. If it is less than 2^31-2, its value is used. If it is larger, then
2^31-2 is used. The seed is reset to 37,480,660 at start-up, SCRATCH A,
SCRATCH, and program prerun.

See Also:
RND

RANK
Returns the number of dimensions in an array.
Syntax: RANK(array-name[$])

Sample: RANK(Color)
RANK(File$)
IF RANK(A)=2 THEN PRINT "Two Dims"

Description:
RANK returns an INTEGER value from one to six that specifies the number of
dimensions that are defined for the array.

See Also:
BASE, DIM, MAXLEN, SIZE

RATIO
Returns the ratio of X to Y hard-clip limits for the PLOTTER IS device.
Syntax: RATIO

Sample: WINDOW 0,RATIO,-1,1
Xmax=100*MAX(1,RATIO)
Ymax=100*MAX(1,1/RATIO)

Description:
RATIO is useful for VIEWPORT and WINDOW calculations and for knowing the
shape of the graphic screen or plotter paper.

See Also:
CLIP, SHOW, VIEWPORT, WINDOW

READ
Reads values from DATA statements.
Syntax: READ variable [,variable ...]

where: variable = variable-name[$] [(*)] |
variable-name [(subscripts)] |
string-name$ [(subscripts)] [sub-string]
subscripts = subscript [,subscript...]

Sample: READ Line,A$
READ Answer$(N)[20;5]
READ A,B,C(I,J)
READ Array(*)

Description:
READ and DATA statements can conveniently initialize multiple variables from
data embedded in the program. An array may be read in row-major order
using the full array specifier, "(*)". DATA statements are stored as strings and
the VAL function is used to read numeric values. The value is rounded to an
integer if an integer variable is specified.

The first READ statement in a context reads the first DATA statement in that
context. Each READstatement thereafter maintains a DATA pointer that
moves to the next item after each is read from the DATA statement. The DATA
pointer can be reset to the beginning of any DATA statement in the context
with the RESTORE statement.

Complex numbers are read in rectangular form, the real part first, followed by
the imaginary part. The two parts should be separated by a comma.

See Also:
DATA, RESTORE

READ KEY
Returns one or more softkey macro definitions.
Syntax: READ KEY key-number, string-name$ [(subscripts)] [sub-string]

READ KEY key-number, string-array$(*)

Sample: READ KEY 2,Keytwo$
READ KEY First_key,Several_keys$(*)

Description:
Softkey macros defined with EDIT, LOAD or SET KEY can be read with this
statement. The key-number is a numeric expression which is rounded to an
integer and should be in the range zero through twenty-three. If a simple
string or array element is specified, then only one key is returned. If a string
array is specified, then successive keys, starting with the key-number
specified, are returned into the elements of the string array.

See Also:
EDIT KEY, LIST KEY, LOAD KEY, RE-STORE KEY, SCRATCH, SET KEY, STORE KEY

READ LABEL
Reads a volume label.
Syntax: READ LABEL string-name$ [FROM volume-specifier]

Sample: READ LABEL Id$
READ LABEL Name$ FROM Vol$

Description:
The volume label on the specified media is read and returned into the string
variable. If no mass storage unit specifier is given, the MSI device is used.

Under UNIX, "No Label" is always returned for the label.

See Also:
PRINT LABEL

READ LOCATOR
Reads the locator device without waiting for a digitize operation.
Syntax: READ LOCATOR x-variable,y-variable [,string-name$]

Sample: READ LOCATOR X,Y
READ LOCATOR Xcoor,Ycoor,Position$

Description:
The locator device position is read into the X and Y variables without waiting
for a digitize operation. The current GRAPHICS INPUT IS device coordinates are
in default units or the units defined in a WINDOW or SHOW statement. The
optional string variable will receive the 8 byte status message defined as
follows:

Byte Meaning 

1 Button Status - Status of the digitizing button on the
locator. If the character is a "1", then the button is
pressed; if it is a "0", then the button is not pressed.

2 Comma delimiter character.
3 Clip Indicator - If the character is a "0", then the

point is outside the hard-clip limits. If a "1", the point
is inside the hard-clip limits, but outside the soft-clip limits
(clipping rectangle - see CLIP). If a "2" then
it's inside the soft-clip limits.

4 Comma delimiter character.
5 Tracking ON/OFF - If the character is a "0", then

tracking is off; if a "1", then tracking is on.
6 Comma delimiter character.
7-8 Button Positions - If S$ is the status string and B is the

button number you wish to test, then BIT(VAL(S$[7,8]), B-1)
returns one if B is down and zero if B is up.

See Also:
DIGITIZE, GRAPHICS INPUT IS, SET ECHO, SET LOCATOR, TRACK, WHERE

READIO
Reads a hardware register or a memory byte/word.
Syntax: READIO(interface-select-code, hardware-register)

READIO(special-interface, address)
READIO(9827, simple-var)

where: hardware-register = numeric-expression rounded to an integer
special-interface = numeric-expression rounded to an integer,
legal values are explained in the text
address = numeric-expression rounded to a linear address
simple-var = numeric-name | numeric-array-element

Sample: Control=READIO(Centronix,2)
Shift_flag=READIO(9826,&H417)

Description:
Hardware Registers

The contents of a hardware interface register are read and returned on the
specified interface. Do not mix READIOWRITEIO operations with
STATUS/CONTROL operations. Do not attempt to use READIOWRITEIO
registers unless you are very familiar with the hardware; use the
STATUS/CONTROL registers instead. Consult the hardware manuals for your
computer for complete documentation on interface hardware. The User's
Guide lists the READIOWRITEIO registers for the interface device drivers
included with HTBasic. For other device drivers, the documentation included
with the driver lists the register definitions.

READIOWRITEIO registers in HTBasic are not compatible with HP BASIC
READIO/WRITEIO registers when the interface hardware is not the same.
TransEra's IEEE-488 and HP's HP-IB use the same IEEE-488 chip; therefore, the
READIOWRITEIO registers are identical. The serial interface hardware
registers differ not only if the UART chip is different, but also if the circuitry
surrounding the chip is different. The TransEra GPIO is designed to be
READIOWRITEIO compatible with HP's GPIO.

Special Interface Select codes
There are a number of special interface select codes which can be read with
the READIO statement. The legal values for special-interface are given in the
following paragraphs. For compatibility with earlier releases of HTBasic,
READIO(8080,L) and READIO(-8080,L) are still supported but have been
replaced with INP and INPW, respectively.

PEEK Memory
READIO(9826,L) and READIO(-9826,L) are used to "peek" at the contents of
a memory byte or word, respectively. L specifies the address of the byte/word
to peek. If peeking a word and L is odd, the even address L-1 is used.

Under the DOS Version, L specifies a linear process address, not a physical
address. To peek into the first megabyte of physical memory, use 8452
instead of 9826. Note the warning below.

Under Windows and NT, L specifies an address within the HTBasic process.

Under UNIX, L specifies an address within the HTBasic process. The special

interface select code 8452 should be used instead of 9826 to peek physical
addresses rather than process addresses. Peeking physical memory is only
possible if the /dev/mem device is readable by the HTBasic process. Note the
following warning.

Warning: Peek should only be done on addresses returned by
READIO(9827,I)! Peeking any other location can cause your system to crash,
data to be lost and damage to your computer hardware. Use of this function
for any other address is unsupported, and TransEra cannot be held responsible
for any consequences.

Locating a Numeric Variable
READIO(9827,I) is used to locate the variable I. READIO(9827,A(0)) is used to
locate the address of the first element of A. These operations are useful when
a small assembly subroutine is stored in a variable and called with WRITEIO.

See Also:
CONTROL, INP, OUT, STATUS, WRITEIO

REAL
Reserves storage for floating point variables and arrays.
Syntax: REAL variable [,variable...]

where: variable = numeric-name [(bounds) [BUFFER]]
bounds = [lower-bound :] upper-bound [,bounds]
lower and upper-bound = integer constant in the range -32767 to 32767.

Sample: REAL X,Buf(500) BUFFER
REAL Volts(-10:10,4)

Description:
REAL declares, dimensions and reserves memory for floating point variables
and arrays. REAL variables use eight bytes of storage space. An array's
maximum dimension is six and each dimension can hold a maximum of
32,767 elements. If a lower bound is not specified, the default is the OPTION
BASE value (0 or 1). A REAL variable may be declared a buffer by specifying
BUFFER after the variable name. BUFFER variables are used with the
TRANSFER statement.

See Also:
ALLOCATE, DEF FN, COM, COMPLEX, DIM, INTEGER, SUB, TRANSFER

REAL
Converts an INTEGER or COMPLEX number to REAL.
Syntax: REAL(numeric-expression)

Sample: PRINT REAL(Z)
DRAW REAL(C),IMAG(C)

Description:
The real part of a complex number is returned with REAL, and the imaginary
part with IMAG. To express the parts of a complex number in polar form, use
ABS and ARG:
PRINT "Rectangular form: Real = ";REAL(Z),"Imag =";IMAG(Z)
PRINT "Polar form: Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

See Also:
ABS, ARG, CMPLX, CONJG, IMAG

RECTANGLE
Draws and optionally fills and edges rectangles.
Syntax: RECTANGLE width,height [,FILL] [,EDGE]

where: width and height = numeric-expressions

Sample: RECTANGLE 10,25
RECTANGLE 8,-10,FILL,EDGE

Description:
A rectangle is a polygon described by its width and height displacement from
the current pen position.

The signs of the width and height determine the position of the rectangle
relative to the current pen position. If the width is positive, the pen position is
on a left corner of the rectangle. If the width is negative, the pen position is on
a right corner of the rectangle. If the height is positive, the pen position is on a
lower corner of the rectangle. And if the height is negative, the pen position is
on an upper corner.

The rectangle can be filled with the current AREA color and edged with the
current PEN color and LINE TYPE. If neither are specified, EDGE is assumed.

The PIVOT and PDIR statements affect the RECTANGLE statement.

See Also:
LINE TYPE, PDIR, PEN, PIVOT, PLOT, POLYGON, POLYLINE

REDIM
Redimensions an array by changing the subscript ranges.
Syntax: REDIM array-name[$](bounds) [,array-name[$](bounds)...]

where: bounds = [lower-bound:] upper-bound [,bounds]
lower and upper-bound = numeric-expressions rounded to integers

Sample: REDIM Array(Lowbnd:Upbnd)
REDIM Myarray$(I,J,K,L)

Description:
An array can only be redimensioned if the number of dimensions is the same
as in the original DIM statement and the total number of elements does not
exceed the total in the DIM statement. Also, to redimension an array declared
in a COM statement, the COM declaration must include subscript information
(as opposed to a full array specifier, "(*)").

REDIM does not change the values presently stored in memory, but because
the number of elements in each dimension might change, the values in each
element may appear to "move" to another element.

See Also:
ALLOCATE, COM, COMPLEX, DIM, INTEGER, REAL

REM
Begins a REMark or comment line for program documentation.
Syntax: REM any text

program statement    ! any text

Sample: REM This statement is not executed
Info=0 ! Clear flag byte

Description:
A REM statement is used to insert comments into programs. The
REMstatement may contain any text you wish. It is useful in explaining what
the program is doing. A comment tail, "!", is similar to the REM statement,
however, the comment tail may appear on the same line as a program
statement. Any text may appear to the right of the comment tail and is
ignored when the line is executed. When an INDENT command is given, the
position of a comment tail is left unchanged.

See Also:
EDIT, INDENT, REN

REMOTE
Sets the remote state on a IEEE-488 device.
Syntax: REMOTE {@io-path | device-selector}

Sample: REMOTE Dev
REMOTE @Pwsply

Description:
The IEEE-488 bus remote line is asserted. If the computer is the active
controller and primary addresses are specified, it listen addresses the devices
to switch them to remote mode. The remote line is asserted if the computer is
the system controller and ISC select code is specified. The io-path or device-
selector must refer to one or more IEEE-488 devices or to the IEEE-488
interface select code.

If the computer is not the system controller or it is not the active controller
and primary addresses are specified, an error is generated.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REQUEST, SEND, SPOLL,
TRIGGER

REN
Renumbers program lines.
Syntax: REN [start-number [,increment]] [IN begin-line [,end-line]]

where: line = line-number | line-label
increment = integer constant

Sample: REN 1000 IN 100,800
REN 1200
REN 100,5
REN 150,1 IN 140,Mark

Description:
This statement renumbers program statements, including the line references
in all program statements such as GOSUB and GOTO to coincide with the new
line numbers.

You can optionally specify the starting position, the increment between lines
or a range of lines to renumber. The default value for both the start line
number and the increment is ten.

Note: You cannot specify a new starting line number that would cause the
lines to change position with respect to other existing program lines. Use
MOVELINES or COPYLINES to do this.

See Also:
COPYLINES, MOVELINES

RENAME
Changes the name of a file.
Syntax: RENAME old-file-specifier TO new-file-specifier

Sample: XT=RENAME "PROG.DAT" TO "CURVE.DAT"
RENAME "X" TO "Xcalc"
RENAME Volume$&Old$ TO New$

Description:
RENAME changes the name of a file. Both the old and the new names may be
specified as string expressions. The new name must not already exist on the
mass storage device.

Under DOS, Windows and UNIX, if you are using RENAME to move a file from
one place in a hierarchical file system to another, the HTBasic RENAME
requires that both file specifiers be complete and both directories be on the
same mass storage device. NT does not require that the destination be on the
same mass storage device.

See Also:
CAT, COPY, CREATE, INITIALIZE, MASS STORAGE IS, PRINT LABEL, PROTECT,
PURGE, READ LABEL, RENAME, SYSTEM$("MSI")

REPEAT ... UNTIL
Defines a loop that is repeated UNTIL a condition is satisfied.
Syntax: REPEAT

statements
UNTIL numeric-expression

where: statements = zero, one or more program statements

Sample: 770 REPEAT
780 CALL Test(X)
790 X=X+Next
800 UNTIL X=Last

Description:
The statements between the REPEAT and UNTIL are first executed. When the
UNTIL statement is reached, the expression is evaluated. If the expression is
false (zero), the statements between the REPEAT and UNTIL are executed
again. If the expression is true (non-zero), execution continues with the
statement following the UNTIL.

See Also:
FOR, LOOP, SELECT, WHILE

REQUEST
Sends a Service Request SRQ on the IEEE-488.
Syntax: REQUEST {@io-path | interface-select-code} ; response-value

where: io-path = I/O path assigned to the IEEE-488 interface.
response-value = numeric-expression rounded to an integer.

Sample: REQUEST @Gpib;Serialpoll
REQUEST Isc;BINIOR(Bit3,64)

Description:
A Service Request, SRQ, is sent by a non-active controller on the IEEE-488 bus.
If the computer is the active controller or if the device-selector or the io-path
specifies address information, an error is generated.

To request service, the response value must have bit six set. The SRQ line will
remain set until polled by the active controller or another REQUEST
statement is executed with bit six clear.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, SEND, SPOLL,
TRIGGER

RE-SAVE
Copies the program into the specified ASCII file.
Syntax: RE-SAVE file-specifier [,start-line [,end-line]]

where: line = line-number | line-label

Sample: RE-SAVE "Story"
RE-SAVE "CALPROG",1000,2000
RE-SAVE "TREE\BRANCH\FILE",Label1

Description:
RE-SAVE outputs any range of program lines to an ASCII file. The resulting
program can be re-entered with the GET statement.

If the specified file already exists, the old contents are discarded before the
SAVE takes place. The program is then stored out in the same format, ASCII
(LIF ASCII) or ordinary (DOS ASCII, UNIX ASCII, etc.), as the previous file. If it
does not exist, a new file is created whose type depends on the setting of
CONFIGURE SAVE ASCII.

See Also:
CONFIGURE SAVE ASCII, GET, LIST, LOAD, RE-STORE, SAVE, STORE

RES
Returns the result of the last numeric keyboard calculation.
Syntax: RES

Sample: Sum=RES+Sum
PRINT "User Response:";RES

Description:
Typing in a numeric or string expression and pressing ENTER causes the
computer to evaluation the expression and print the result on the message
line. This is called "calculator mode" and allows you to use your computer as
you would a hand calculator. If the result is numeric, it is saved for later recall
by using the RES function.

RESET
Resets an interface or file or buffer pointers.
Syntax: RESET {@io-path | interface-select-code}

Sample: RESET 9
RESET Gpib
RESET @Buff

Description:
The RESET statement directed to an interface performs an interface reset.
When directed to a file it sets the file position pointer to the beginning of the
file. When directed to a buffer it sets all buffer control entries to their initial
values with the empty and fill pointers set to one and all other entries set to
zero.

RESTORE
Specifies which DATA statement to use for the next READ operation.
Syntax: RESTORE [{line-number | line-label}]

Sample: RESTORE
RESTORE 950
RESTORE Star

Description:
The next READ statement gets its data from the current data pointer.
RESTORE sets the data pointer to the specified program line. If that line is not
a DATA statement the next higher numbered DATA statement will be used for
the next READ statement. If no line is specified, the data pointer is set to the
first DATA statement in the current context.

See Also:
DATA, READ

RE-STORE
Stores the BASIC program in a file.
Syntax: RE-STORE file-specifier

Sample: RE-STORE "FFT"
RE-STORE Volume$&Myfile$

Description:
The program currently in memory is STOREd in the file in binary form. If the
file already exists, it must be a PROG file. The old contents are discarded and
the file is replaced with the current program in memory. If it does not exist, a
new PROG file is created.

See Also:
GET, LIST, LOAD, RE-SAVE, RE-STORE KEY, SAVE, STORE

RE-STORE KEY
Stores the KEY definitions in a file.
Syntax: RE-STORE KEY file-specifier

Sample: RE-STORE KEY "Definition"
RE-STORE KEY "A:KEYS"

Description:
Softkey macro definitions are stored into the specified file. If the file already
exists, the old contents are discarded and the present key definitions are
stored. If it does not exist, a new BDAT file is created.

Using FORMAT OFF, the definition for each defined softkey is written to the file
by outputting two items. The first item is an integer, specifying the key
number. The second item is a string, giving the key definition.

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, SCRATCH, SET KEY, STORE KEY

RESUME INTERACTIVE
Restores the normal functions of program control keys.
Syntax: RESUME INTERACTIVE

Sample: RESUME INTERACTIVE

Description:
The normal functions of the program control keys CLR I/O, ENTER, PAUSE,
RESET, STEP and STOP are enabled. These keys are disabled by SUSPEND
INTERACTIVE.

See Also:
SUSPEND INTERACTIVE

RETURN
Returns to the program line following the last GOSUB line.
Syntax: RETURN

Sample: 200 GOSUB 300
...
299 STOP
300 PRINT A,B,C
310 RETURN

Description:
The GOSUB statement transfers control to a subroutine; the RETURN
statement transfers control back to the next statement following the GOSUB.
You can have many GOSUBs to the same subroutine and a RETURNoccurring
in that subroutine returns control to the statement following the specific
GOSUB used to get to the subroutine. You can only enter a subroutine by using
GOSUB. If you don't use GOSUB, the RETURN statement causes an error
when executed.

The RETURN keyword is also used to return values from user-defined
functions. See DEF FN for an explanation of RETURN used in this way.

See Also:
DEF FN, GOSUB

REV$
 Reverses the sequence of characters in a string.
Syntax: REV$(string-expression)

Sample: Backward$=REV$(Forward$)
Print REV$("radaR")

Description:
A string that contains the reverse sequence of characters of its argument is
returned. This can help when searching for the last occurrence of a string

See Also:
CHR$, LWC$, NUM, RPT$, POS, TRIM$, UPC$, VAL, VAL$

RND
Returns a pseudo-random number.
Syntax: RND

Sample: IF RND>0.25 THEN GOTO Start
Percent=RND*100

Description:
A pseudo-random number greater-than zero and less-than one is returned. A
seed value determines the starting point in the series. The seed can be
modified using the RANDOMIZE statement. The default seed at start-up,
SCRATCH, SCRATCH A and prerun is 37,480,660. The series of numbers
returned is not guaranteed to be the same on different versions of HTBasic

See Also:
RANDOMIZE

ROTATE
Shifts a 16 bit binary value with wraparound.
Syntax: ROTATE(numeric-expression, distance)

where: distance = numeric-expression rounded to an integer.

Sample: B1=ROTATE(B2,5)
Word=ROTATE(Word,Places)

Description:
The numeric expression is rounded to an integer. The resulting integer, in
binary form, is rotated the specified distance. The distance must be in the
range 0 to ±15. If the distance is positive, then bits are moved to the right.
Any bits moved out of the right-most bit (the least significant bit) are moved
into the left-most bit (the most significant bit). If the distance is negative, then
bits are moved to the left. Any bits moved out of the left-most bit are moved
into the right-most bit.

For ROTATE(100,5) the number 100 is treated as a binary number and is
rotated right five bits as follows:

100 = 0000000001100100
ROTATE(100,5) = 0010000000000011

The result is returned as the decimal integer, 8195.

See Also:
BINAND, BINCMP, BINEOR, BINEQV, BINIMP, BINIOR, BIT, SHIFT

RPLOT
Moves the pen relative to the current graphic location.
Syntax: RPLOT x-displacement, y-displacement [,pen-control]

RPLOT numeric-array(*) [,FILL] [,EDGE]

Sample: RPLOT 5,2
RPLOT 5,-2,-1
RPLOT Array(*)
RPLOT Vector(*),FILL,EDGE

Description:
RPLOT is the same as IPLOT except that it moves the pen relative to the local
origin. The local origin is the logical pen position after one of the following
statements: AXES, DRAW, FRAME, GINIT, GRID, IDRAW, IMOVE, IPLOT, LABEL,
MOVE, PLOT, POLYGON, POLYLINE, RECTANGLE and SYMBOL. See PLOT for a
full explanation of RPLOT arguments.

The PIVOT and PDIR statements affect the RPLOT statement.

See Also:
AREA, CLIP, DRAW, IPLOT, MOVE, PLOT, POLYGON, POLYLINE

RPT$
Returns a string replicated a specified number of times.
Syntax: RPT$(string-expression, repeat-count)

Sample: A$=RPT$("!",100)
PRINT RPT$("*",50)
PRINT RPT$(" ",(Centervalue/2)

Description:
The repeat count is a numeric expression rounded to an integer value. If it is
zero, a zero length string is returned. If it is negative or the resulting string
would be greater than 32,767 characters, an error is generated

See Also:
CHR$, LWC$, NUM, REV$, POS, TRIM$, UPC$, VAL, VAL$

RUN
Starts program execution.
Syntax: RUN [line-number | line-label]

Sample: RUN
RUN 1000
RUN Next

Description:
RUN is executed in two parts, prerun initialization and program execution.

The prerun part reserves memory space for variables declared in DIM, REAL,
INTEGER, COMPLEX and COM statements or implied in the program context.
Numeric variables are set to zero and string variables are set to zero length
strings. Prerun also checks for multi-line syntax errors such as illegal program
structure, array references and mismatched COM statements. If prerun
detects any errors, they are reported to the user and the program halts.

If prerun detects no errors, the MAIN program is run starting at the beginning
or if a program line or label is specified, it starts execution at the specified
line. The program line or label must be in the MAIN context. The program runs
normally until it encounters a PAUSE, a STOP or END statement, an error or a
TRACE PAUSE line.

See Also:
CONT, END, LOAD, PAUSE, SCRATCH, STOP

RUNLIGHT
Controls the display of the pseudo runlight on the display.
Syntax: RUNLIGHT { ON | OFF }

Sample: RUNLIGHT OFF

Description:
The pseudo RUNLIGHT is a single character in the lower right-hand corner of
the display which indicates the state of HTBasic. By default, it is displayed.
When doing screen dumps, the character can be unsightly so it is best to do a
RUNLIGHT OFF before doing the dump. The meanings of the pseudo runlight
characters are given in the following table.

Character Meaning
? Input
H Help
* Immediate command
R Running
C Change
F Find
E Edit
S SUBs
 - Paused
(none) Idle

See Also:
CLEAR LINE, CLEAR SCREEN, KEY LABELS

SAVE
Saves the current program into an ASCII file.
Syntax: SAVE file-specifier [,start-line [,end-line]]

where: line = line-number | line-label

Sample: SAVE "DRAFTER"
SAVE "Pennies",100,Sort
SAVE "A:MYPROG"

Description:
SAVE outputs any range of program lines to an ASCII file. Depending on the
setting of CONFIGURE SAVE ASCII, the file type will either be ASCII (LIF ASCII)
or ordinary (DOS ASCII, UNIX ASCII, etc.). The resulting program can be re-
entered with the GET statement.

CONFIGURE SAVE ASCII sets the file type SAVE uses when saving a file to
disk. The default setting, ON, produces a LIF ASCII file. This type of file is
useful for exchanging programs with HP Workstations and for saving programs
with string literals that contain embedded control characters such as carriage-
returns or line-feeds in string literals since GET will interpret them as end-of-
line indicators.

If the specified file already exists, SAVE generates an error message; whereas
RE-SAVE will reuse an existing file.

See Also:
GET, LIST, LOAD, RE-SAVE, RE-STORE, STORE

SBYTE
Checks for second byte of a two byte character.
Syntax: SBYTE(string)

Sample: PRINT SBYTE(A$)
IF SBYTE(A$[I]) THEN PRINT "Two Bytes"

Description:
SBYTE is used with FBYTE to determine whether a character is one or two
bytes long. FBYTE returns a one if the first byte of the string argument is in the
valid range for the second byte of a two byte character.

This function is only available and enabled in specific versions of HTBasic.

See Also:
CVT$, FBYTE

SC
Returns the interface select code associated with an I/O path name.
Syntax: SC(@io-path)

Sample: Code=SC(@Dev)

Description:
Only the interface code is returned if the io-path is assigned to a device-
selector with primary addressing specified. A zero is returned if the io-path
name is assigned to a buffer

See Also:
ASSIGN

SCRATCH
Clears user memory.
Syntax: SCRATCH [A|ALL | B|BIN | C|COM | KEY [key-number] |

R|RECALL]

Sample: SCRATCH
SCRATCH KEY 2
SCRATCH C

Description:
SCRATCH allows you to clear the BASIC program, program variables, COM
variables, softkey macro definitions and the recall buffer. The following
paragraphs explain each variation of SCRATCH

SCRATCH
Deletes the current BASIC program, if any and any variables not in COM.

SCRATCH A or ALL
SCRATCH A clears the BASIC program, all variables, including those in COM
and all softkey macro definitions. Internal parameters are set to their default,
start-up values. SCRATCH ALL is synonymous with SCRATCH A

SCRATCH B or BIN
In HTBasic, SCRATCH B is equivalent to SCRATCH A. In HP BASIC, it deletes
all BINs except the CRT driver in use. In HTBasic, BINs are used for device
drivers which can't be SCRATCHed. SCRATCH B is synonymous with
SCRATCH BIN

SCRATCH C or COM
SCRATCH C clears all variables including those in COM, but leaves the BASIC
program and the softkey macro definitions intact. SCRATCH COM is
synonymous with SCRATCH C.

SCRATCH KEY [key-number]
Without the optional key number, this command clears all the softkey macro
definitions. With the key number, only the specified key is cleared. The key-
number may be a numeric expression which is rounded to an integer and
must be in the range zero through twenty-three.

SCRATCH R or RECALL
SCRATCH R clears the keyboard RECALL buffer. SCRATCH RECALL is
synonymous with SCRATCH R

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, RE-STORE KEY, SET KEY, STORE KEY

SECURE
Protects programs lines.
Syntax: SECURE [start-line-number [,end-line-number]]

where: line-number = integer constant

Sample: SECURE
SECURE Payrolla,Payrollb

Description:
The SECURE command protects programs lines so they cannot be listed.
Secured lines are listed as a line number followed by an asterisk "*" character.
If no program lines are specified, all program lines are secured. If no end-line
is specified, only the start-line is secured.

Warning: Once a line has been secured it can not be un-secured! Make sure
that you have another copy of the program before you use the SECURE
command.

See Also:
EDIT, LIST

SELECT ... CASE
Defines a CASE block structure.
Syntax: SELECT string-or-numeric-expression

CASE case-expression
statements
[CASE ELSE]
statements
END SELECT

where: statements = zero, one or more program statements
including additional CASE statements
case-expression = [relation] value [,case-expression]
relation = { < | <= | = | >= | > | <> | value TO }
value = string-or-numeric-expression

Sample: 10 SELECT Option$
20 CASE "B"
30 A=1
40 CASE "0" TO "9","y","n"
50 A=2
60 CASE ELSE
70 A=0
80 END SELECT

Description:
The SELECT and END SELECT statements enclose a SELECT structure. The
SELECT statement specifies a numeric or string expression. Within the
SELECT structure, CASE statements introduce alternative program sections
to be executed based on the value of the SELECT statement expression. Each
CASE statement type must match the type of expression in the SELECT
statement. If a case-expression contains multiple values, the values are tested
from left to right until a match is found. Any remaining expressions are not
tested.

The SELECT expression value is used to test against each CASE statement
value or range of values. The program statements following the first CASE
statement to match are executed. Execution then continues at the line
following the END SELECT statement. If none of the CASE statements match
and there is an optional CASE ELSE statement, the program statements
following the CASE ELSE will be executed, otherwise the entire SELECT
structure is skipped.

While doing so is not encouraged, jumping into a SELECT structure with a
GOTO is legal. Program statements are executed normally until a CASE
statement is encountered. Execution then continues at the line following the
END SELECT statement.

If there is an expression evaluation error in either the SELECT statement or
one of the CASE statements the SELECT statement line number is reported
with the error value.

Implementing ELSE IF
Although HTBasic does not have an explicit ELSE IF statement, it is possible to
accomplish the same thing using a SELECT statement. Suppose you wish an

ELSE IF construct like this:
10 IF X<-1 THEN
20 !do something here
30 ELSE IF Z=0 THEN
40 !do something else here
50 ELSE
60 !and something else here
70 END IF

This example can be accomplish using the SELECT statement as follows:
5 SELECT 1
10 CASE X<-1
20 !do something here
30 CASE Z=0
40 !do something else here
50 CASE ELSE
60 !and something else here
70 END SELECT

Line 5 states that the first case which evaluates to one will be executed. Since
the result of a logical operator is 0 or 1, the first case with a logical expression
that evaluates true will be executed.

See Also:
FOR, IF, LOOP, REPEAT, WHILE

SEND
Sends messages on the IEEE-488 bus.
Syntax: SEND dest ;message [message ...]

where: dest = {@io-path | interface-select-code}
io-path = I/O path assigned to the IEEE-488 interface
message = MTA | MLA | UNT | UNL |
CMD [expression-list] |
DATA [expression-list [END]] |
TALK primary-address |
LISTEN address-list |
SEC address-list
address-list = address [,address...]
address = numeric-expression rounded to an integer
expression-list = expression [,expression...]
expression = numeric-expression | string-expression

Sample: SEND 7;UNL MTA LISTEN 2 DATA "Bye" END
SEND @Gpib;UNL MLA TALK Primary CMD 24+128

Description:
The SEND statement sends low level IEEE-488 commands and data bytes.
IEEE-488 commands are sent with the ATN line asserted; whereas data bytes
are sent without the ATN line asserted. The computer must be the active
controller to use CMD, TALK, UNT, LISTEN, UNL, SEC, MTA or MLA. Any talk
addressed device may send DATA.

Message Action Taken
CMD Sends the expression values as command bytes. CMD with no

items asserts the ATN line.
DATA Sends the expression values as data bytes. If END is

added, EOI is set on the last data byte.
LISTEN Sends the expression values as listen address commands.
MLA Sends the Interface's Listen Address command.
MTA Sends the Interface's Talk Address command.
SEC Sends the expression values as secondary address commands.
TALK Sends the expression value as a talk address command.
UNL Sends the unlisten command.
UNT Sends the untalk command.

See Also:
ABORT, CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SPOLL,
TRIGGER

SEPARATE ALPHA FROM GRAPHICS
On a bit-mapped display, simulates 9836 style alpha/graphics hardware.
Syntax: SEPARATE ALPHA [FROM GRAPHICS]

Sample: IF Display=8 THEN SEPARATE ALPHA FROM GRAPHICS

Description:
This statement should only be used with the CRTB screen driver (see PLOTTER
IS), since the CRTA driver uses separate alpha and graphics hardware.
SEPARATE ALPHA is the opposite of MERGE ALPHA WITH GRAPHICS. When
separate, one or more bit plane is reserved for alpha text and the remaining
planes are reserved for graphic output. The alpha and graphic planes can then
be turned on or off or DUMPed independently. However, ALPHA text color and
graphic pens are limited as shown in the table below. At the time of this
manual printing, this statement was not supported by the Windows version of
HTBasic.

Because this statement turns off COLOR MAP mode, it should be executed
before any PLOTTER IS CRT, "INTERNAL";COLOR MAP statement.

The following table shows the colors available when SEPARATE ALPHA
FROM GRAPHICS is used, depending on the total number of colors available.

Total Graph Black White Brown Cyan
Colors Pens Alpha Alpha Alpha Alpha
16 0-7 0 8 - -
32 0-15 0 16 - -
64 0-15 0 16 32 48
128 0-31 0 32 64 96
256 0-63 0 64 128 192

Porting Issues
On a PC with an EGA or VGA screen adaptor, PLOTTER IS 6 and SEPARATE
ALPHA are the best way to simulate a 9836C display for programs that use
both alpha and graphic screens.

HP BASIC assigns green to the first pen; HTBasic assigns white. If you prefer
green or some other color, you must explicitly set a range of pen values to the
color desired. The range starts with the white alpha pen value from the table
above and continues to one less than the value of the brown alpha pen value.
For 16 and 32 color systems, the last value should be 15 and 31, respectively. 
For example, the following code changes the alpha pen from white to green on
a 16 color display:
10 SEPARATE ALPHA FROM GRAPHICS
20 PLOTTER IS CRT,"INTERNAL";COLOR MAP
30 FOR I=8 TO 15
40 SET PEN I INTENSITY 0,1,0
50 NEXT I
60 END

See Also:
MERGE ALPHA WITH GRAPHICS

SET ALPHA MASK
Determines which plane(s) can be modified by ALPHA display operations.
Syntax: SET ALPHA MASK numeric-expression

Sample: SET ALPHA MASK Frame
SET ALPHA MASK 2
SET ALPHA MASK IVAL("1010",2)
IF Frame=5 THEN SET ALPHA MASK 3

Description:
The numeric expression value specifies which display bit planes are modified
by alpha display operations. This statement does not affect monochrome
displays. This statement is equivalent to CONTROL CRT,18.

At the time of this manual printing, this statement was not supported by any
versions of HTBasic. Try MERGE ALPHA or SEPARATE ALPHA.

See Also:
ALPHA HEIGHT, ALPHA PEN, CLEAR SCREEN, MERGE ALPHA, SEPARATE ALPHA,
SET DISPLAY MASK

SET CHR
Defines the bit-patterns for one or more characters.
Syntax: SET CHR first-character, integer-array(*)

where: first-character = string-expression

Sample: ALLOCATE INTEGER Onechar(1:CHRY,1:CHRX)
SET CHR 65,Onechar(*)
ALLOCATE INTEGER Several(1:5;1:CHRY,1,:CHRX)
SET CHR 66,Several(*)

Description:
This command can be used to redefine the appearance of one or more
characters. The computer display must support redefinition of alpha
characters or an error will be returned.

At the time of this manual printing, this statement was not supported by any
versions of HTBasic.

See Also:
CHRX, CHRY, SYMBOL

SET DISPLAY MASK
Specifies which planes can be seen on the alpha display.
Syntax: SET DISPLAY MASK numeric-expression

Sample: SET DISPLAY MASK Visible
SET DISPLAY MASK IVAL("1010",2)

Description:
The numeric expression value specifies which display bit planes are displayed.
This statement does not affect monochrome displays. This statement is
equivalent to CONTROL CRT,20;m.

At the time of this manual printing, this statement was not supported by any
versions of HTBasic. Try MERGE ALPHA or SEPARATE ALPHA.

See Also:
ALPHA HEIGHT, ALPHA PEN, CLEAR SCREEN, MERGE ALPHA, SEPARATE ALPHA,
SET ALPHA MASK

SET ECHO
Sets the echo location on the PLOTTER IS device.
Syntax: SET ECHO x-coordinate,y-coordinate

Sample: SET ECHO Xx,Yy
SET ECHO 120,240

Description:
The SET ECHO statement specifies a location for the PLOTTER IS echo
indicator. If the PLOTTER IS device is a display, the echo is a cross-hair. If the
PLOTTER IS device is a plotter, the echo is the pen or device pointer.

The cross-hair is displayed at the specified location if it is within the device
limits. If the specified location is outside the device limits the cross-hair is not
displayed. Thus, to turn off the cross-hair, specify a position off screen.

The plotter pen is moved (with the pen up) to the specified location if it is
within the clip limits. If the specified location is outside the clip limits the pen
is moved to and then along the clip limit.

The location returned by the READ LOCATOR statement can be used with the
SET ECHO statement to cause the echo to track the GRAPHICS INPUT IS
location.

Use SET LOCATOR to specify a new GRAPHICS INPUT IS location.

See Also:
DIGITIZE, GRAPHICS INPUT IS, PLOTTER IS, READ LOCATOR, SET LOCATOR,
TRACK, WHERE

SET KEY
Defines one or more softkey macros.
Syntax: SET KEY key-number, {string-expression | string-array$(*)}

Sample: SET KEY 2,Keytwo$
SET KEY First_key,Several_keys$(*)

Description:
Softkey macros may be defined with the SET KEY statement. The key-number
is a numeric expression which is rounded to an integer and should be in the
range zero through twenty-three. If a string expression is specified, then only
one key is defined. If a string array is specified, then successive keys, starting
with the key-number specified, are defined from the elements of the string
array.

Once defined, the key definition is displayed in the softkey menu. Pressing the
softkey (when no ON KEY is defined for that key) will type the characters
specified in the definition, just as if they had been typed on the keyboard. The
definition can include function keys, such as CLEAR SCR.

If the definition begins with a CLR LN key (CHR$(255) & "#"), only the
characters after the CLR LN will be displayed. If the definition begins with a
CONTINUE key, the two characters (CHR$(255) & "C") will be replaced with the
string "CONTINUE". If the definition begins with a RUN key, the two characters
(CHR$(255) & "R") will be replaced with the string "RUN".

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, SCRATCH KEY, STORE KEY

SET LOCATOR
Sets a new graphic locator position on the GRAPHICS INPUT IS device.
Syntax: SET LOCATOR x-position,y-position

Sample: SET LOCATOR 20,30
SET LOCATOR Xx,Yy

Description:
The SET LOCATOR statement specifies the current location for the GRAPHICS
INPUT IS device. Subsequent movement of the GRAPHICS INPUT IS device will
be relative to the new location specified. SET LOCATOR only works with
graphic input devices that use relative locators (i.e. mouse, arrow-keys) and
not with those that use absolute locators (i.e. tablets).

Use SET ECHO to specify a new PLOTTER IS echo location.

See Also:
DIGITIZE, GRAPHICS INPUT IS, READ LOCATOR, SET ECHO, TRACK, WHERE

SET PEN
Defines part or all of the color map.
Syntax: SET PEN pen-number COLOR { h, s, l | numeric-array(*) }

SET PEN pen-number INTENSITY { r, g, b | numeric-array(*) }

where: h,s,l, r,g,b = numeric-expressions in the range zero to one.

Sample: SET PEN Num COLOR H,S,L
SET PEN Crayons COLOR Hslarray(*)
SET PEN Name INTENSITY Red,Green,Blue
SET PEN 1 INTENSITY 3/15,5/15,9/15

Description:
The SET PEN statement changes the color map values used for each
available pen number. This statement only works if the COLOR MAP mode is
active. If it is not active, this statement is ignored and no error is returned.

A color may be specified in either RGB or HSL color space (see COLOR for an
explanation about RGB and HSL color spaces). Redefine multiple pens using
the array specifier or redefine individual pens by specifying one HSL or RGB
color value. In either case, the pen-number specifies the first entry in the color
map to be defined. The pen-number is a numeric expression which is rounded
to an integer and should be in the range 0 to n-1, where n is the number of
colors.

The closest possible color will be used if the computer display cannot display
the color you select. When drawing an area in a certain color, it may be
possible to produce the color more accurately by specifying SET PEN followed
by AREA PEN, rather than specifying AREA COLOR or AREA INTENSITY.

Any pixels already drawn with the specified pen are changed to the new color
(unless the color map usage method is ReadOnly). All SET PEN statements
take effect immediately upon execution. The effects of all SET PENstatements
last until the next SET PEN statement of the same type, or until GINIT or
QUIT. In cases where dithering is used, changing the color map changes the
colors available to the dithering process.

Array
If an array is used to set more than one pen, the array must be 2-dimensional
and have 3 columns. The number of rows determines the number of pens set.
For example,
1!RE-SAVE"WINCLR.BAS"
10 PLOTTER IS CRT,"INTERNAL";COLOR MAP
20 DATA .5,.5,.5 ! 8 = dark grey
30 DATA .75,.75,.75 ! 9 = light grey
40 DATA .5, 0, 0 ! 10 = dark red
50 DATA .5,.5, 0 ! 11 = dark yellow
60 DATA 0,.5, 0 ! 12 = dark green
70 DATA 0,.5,.5 ! 13 = dark cyan
80 DATA 0, 0,.5 ! 14 = dark blue
90 DATA .5, 0,.5 ! 15 = dark magenta
180 !
190 DIM Palette(8:15,1:3)
200 READ Palette(*)

210 SET PEN 8 INTENSITY Palette(*)
220 END

See Also:
AREA PEN, COLOR, PEN, PLOTTER IS

SET TIME
Sets the time of day clock.
Syntax: SET TIME seconds

Sample: SET TIME 43200
SET TIME Hrs*3600+Min*60

Description:
This command sets the time, but not the date. The seconds value is a numeric
expression which specifies the number of seconds past midnight. If it includes
a fraction, the fraction is rounded to match the clock hardware of the system
you are using.

DOS and Windows
Under DOS and Windows, the time can be specified to the nearest hundredth
of a second, although the PC clock is only accurate to 1/18th of a second.

NT Usage Notes
To set the time, you must have the "Change the system time" user right or
belong to a group that has this right. Usually the Administrators and Power
Users groups have this right.

UNIX Usage Notes
To set the time, you must be the super-user. Note that HTBasic is different
from HP BASIC/UX, which keeps its own time separate from the operating
system. HTBasic time statements are integrated with UNIX and can be used in
place of the UNIX date command for those who don't want to learn another
syntax. HP BASIC/UX uses the SET TIME statement, specified without any
value, to synchronize the BASIC time with the UNIX time. Under HTBasic, this
particular syntax is accepted, but does nothing.

See Also:
DATE, DATE$, TIME, TIME$, SET TIMEDATE, TIMEDATE

SET TIMEDATE
Sets the date and time of the computer's clock.
Syntax: SET TIMEDATE time-value

Sample: SET TIMEDATE TIMEDATE+3600
SET TIMEDATE DATE("6 Nov 1959")
SET TIMEDATE DATE("17 Sep 1987")+TIME("10:00:00")

Description:
The time-value is a numeric expression and represents a time and date. Use
the DATE and TIME functions to convert a time expressed in the familiar
formats to the time-value required by this command. If the DATE function is
used and the TIME function is not, the time is set to midnight of that date. The
date must be within the legal range supported by your operating system. The
time may include a fraction, in which case it is rounded to match the clock
hardware of the system you are using.

DOS and Windows
Under DOS and Windows, the time can be specified to the nearest hundredth
of a second, although the PC clock is only accurate to 1/18th of a second. The
legal range of dates is 1 Jan 1980 to 31 Dec 2099.

NT Usage Notes
To set the time, you must have the "Change the system time" user right or
belong to a group that has this right. Usually the Administrators and Power
Users groups have this right.

UNIX Usage Notes
To set the time, you must be the super-user. Note that HTBasic is different
from HP BASIC/UX, which keeps its own time separate from the operating
system. HTBasic time statements are integrated with UNIX and can be used in
place of the UNIX date command for those who don't want to learn another
syntax. HP BASIC/UX uses the SET TIMEDATEstatement, specified without
any value, to synchronize the BASIC time with the UNIX time. Under HTBasic,
this particular syntax is accepted, but does nothing. The legal range of dates
is 1 Jan 1970 to 19 Jan 2048, Greenwich Mean Time.

See Also:
DATE, DATE$, TIME, TIME$, SET TIME, TIMEDATE

SGN
Returns the arithmetic sign of an expression.
Syntax: SGN (numeric-expression)

Sample: Xsgn=SGN(X)
Discriminate=SGN(B*B-4*A*C)

Description:
SGN returns a value of 1 if the numeric expression is positive, a value of -1 if
it is negative and 0 if it is zero.

See Also:
ABS, FRACT, INT, MAXREAL, MINREAL, MOD, MODULO

SHIFT
Shifts a 16 bit binary value.
Syntax: SHIFT(numeric-expression, distance)

where: distance = numeric-expression rounded to an integer.

Sample: Check=SHIFT(Word1,Place)
K=SHIFT(100,-6)

Description:
The numeric expression is rounded to an integer. The resulting integer, in
binary form, is shifted the specified distance. The distance must be in the
range ±15. If the distance is positive, bits are moved to the right. Any bits
moved out of the right-most bit (the least significant bit) are discarded and
zero bits are shifted into the left-most bit (the most significant bit). If the
distance is negative, bits are moved to the left. Any bits moved out of the left-
most bit are discarded and zero bits are shifted into the right-most bit.

For SHIFT(100,5) the number 100 is treated as a binary number and is shifted
right five bits as follows:

100 = 0000000001100100
SHIFT(100,5) = 0000000000000011

The result is returned as the decimal integer, 3.

See Also:
BINAND, BINCMP, BINEOR, BINEQV, BINIMP, BINIOR, BIT, ROTATE

SHOW
Defines the graphics unit-of-measure isotropically.
Syntax: SHOW left,right,bottom,top

Sample: SHOW -10,20,0,75
SHOW Left,Right,Bottom,Top

Description:
SHOW, like WINDOW, specifies the values to be displayed within the
VIEWPORT or the hard-clip boundaries. They can be any units of measure you
wish to work with (inches, miles, years, etc.).

The SHOW and WINDOW statements differ in how they map data onto the
viewport. SHOW uses isotropic units (the X and Y units are of equal length);
whereas WINDOW may use non-isotropic units (the X and Y units are of
different lengths).

A SHOW image can be "mirrored" about the X or Y axes by reversing the
order of the limits for each dimension by specifying the high value before the
low value.

See Also:
CLIP, VIEWPORT, WINDOW

SIGNAL
Initiates a software interrupt.
Syntax: SIGNAL signal-number

Sample: SIGNAL Post
SIGNAL 15

Description:
The signal number may be a numeric expression which is rounded to an
integer and should be in the range of zero through fifteen. If an ON SIGNAL
statement has defined a branch for this signal number and the priority allows,
the branch is executed.

See Also:
DISABLE, ENABLE, OFF SIGNAL, ON SIGNAL

SIN
Returns the sine of the argument.
Syntax: SIN(numeric-expression)

Sample: A=SIN(B)
Sine=SIN(Angle)

Description:
The range of the sine function is -1 to 1 inclusive. The numeric expression is
treated as an angle in the current trigonometric mode: RADians or DEGrees.
The default trigonometric mode is radians.

COMPLEX Arguments
SIN accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the angle must be specified in radians,
regardless of the current trigonometric mode. The real and imaginary parts of
SIN(Z) are calculated (using real arithmetic) as:

REAL(SIN(Z)) = SIN(REAL(Z))*COSH(IMAG(Z))
IMAG(SIN(Z)) = COS(REAL(Z))*SINH(IMAG(Z))

Notice that intermediate values generated during the calculation of the
function can cause over or underflow errors for very large or small values of Z.

See Also:
ACS, ASN, ATN, COS, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI,
RAD

SINH
Returns the hyperbolic sine of an expression.
Syntax: SINH(numeric-expression)

Sample: I=SINH(Z)
Hsine=SINH(Angle)

Description:
SINH accepts either a COMPLEX or REAL argument and returns a value of the
same type. The argument must be specified in radians, regardless of the
current trigonometric mode. The real and imaginary parts of SINH(Z) are
calculated (using real arithmetic) as:

REAL(SINH(Z)) = SINH(REAL(Z))*COS(IMAG(Z))
IMAG(SINH(Z)) = COSH(REAL(Z))*SIN(IMAG(Z))

Notice that intermediate values generated during the calculation of the
function can cause over or underflow errors for very large or small values of Z.

See Also:
ACSH, ASNH, ATNH, COSH, TANH

SIZE
Returns the number of elements of an array dimension.
Syntax: SIZE(array-name[$],dimension)

where: dimension = integer between 1 and 6, £ RANK of array

Sample: SIZE(A$,X)
Total=SIZE(S$,1)
Upper=BASE(Z,2)+SIZE(Z,2)-1

Description:
The SIZE is the difference between the upper and lower bounds plus one. The
dimension argument may be a numeric expression which is rounded to an
integer and should be in the range of one through six. If the array does not
have as many dimensions as the dimension you specify, an error will be
generated.

See Also:
BASE, DIM, MAXLEN, RANK

SOUND
Produces tones on the computer speaker.
Syntax: SOUND numeric-array(*)

SOUND voice-number, frequency, volume, duration

where: voice-number, frequency, volume, duration = numeric-expressions

Sample: SOUND Voice,Freq,Vol,Dur
SOUND 2,440,10,0.70
SOUND Maryhadalittle(*)

Description:
On computers which support sound generation, this command can be used to
control the sound voices. Single or multiple tones can be specified. At the time
of this manual printing, no versions of HTBasic supported this statement

See Also:
BEEP

SPOLL
Performs a serial poll of a IEEE-488 device.
Syntax: SPOLL({@io-path | device-selector})

Sample: Stat=SPOLL(712)
SPOLL(@Dev)

Description:
The SPOLL function returns the integer serial poll response of the specified
IEEE-488 device. The computer must be the active controller and a primary
device address must be specified. One secondary address may be specified.

The IEEE-488 bus action is: ATN, UNL, MLA, TAD, SPE not-ATN, Read data byte,
ATN, SPD, UNT.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND,
TRIGGER

SQRT
Returns the square root of an expression.
Syntax: SQRT(numeric-expression)

SQR(numeric-expression)

Sample: Root=SQRT(10*X)
PRINT "Square Root of";Y;"=";SQR(Y)

Description:
The square root function may be entered as either SQRT or SQR.

COMPLEX Arguments
SQRT accepts either a COMPLEX or REAL argument and returns a value of the
same type. SQRT(Z) returns the principal value, defined (in real arithmetic)
as:

REAL(SQRT(Z)) = SQRT((SQRT(REAL(Z)^2+IMAG(Z)^2)+REAL(Z))/2)

IMAG(SQRT(Z)) = SGN(Y)*
SQRT((SQRT(REAL(Z)^2+IMAG(Z)^2)-REAL(Z))/2)

which returns a real part = 0. The domain of SQRT includes all points in the
complex plane. However, intermediate values generated during the
calculation of the function can also cause over or underflow errors for very
large or small values of Z.

See Also:
EXP, LOG, LGT

STATUS
Returns control information from an interface or I/O path.
Syntax: STATUS source [,register] ;variable [,variable...]

STATUS(source, register)

where: source = @io-path | interface-select-code
register = numeric-expression rounded to an integer
variable = numeric-name [(*)]

Sample: STATUS CRT;Col,Row
STATUS @Io,1;Type
IF STATUS(CRT,6) THEN ALPHA OFF
PRINT "Baud rate is ";STATUS(9,3)
STATUS 1801,19;Gains(*)

Description:
The I/O path or interface register contents are copied into the numeric
variables, starting at the specified register number and continuing until the
variable list is exhausted. The default register number is zero.

The range of legal registers and the meaning of values read from them differ
for each interface. The User's Guide describes the CONTROL and STATUS
registers for each interface and for I/O paths. Typically, registers return integer
values and if you specify real values, they are rounded to integers. However,
drivers can return real values or even arrays, so the documentation should be
consulted.

The function form of STATUScomplements the STATUS statement. It allows
immediate access to a single register without need for a temporary variable or
separate STATUSstatement. However, the STATUSfunction can only return
one value at a time, while the STATUS statement can return multiple registers
in a single statement.

Porting to HP BASIC
STATUS @Iopath,2 always returns a 4. STATUS @File,3 returns the current
length, not the CREATE length. This is because files are extendible under DOS,
Windows, NT and UNIX.

The STATUS() function is an addition to HTBasic. Any STATUS or CONTROL
registers greater than 99 are also additions. As in HP BASIC, STATUS register
0 of interface cards contains the card ID. Interface cards that are available on
a PC, but not on an HP BASIC Workstation are identified with ID numbers
greater than or equal to 300. These new features should not be used in
programs that must be ported back to HP BASIC.

See Also:
CONTROL, READIO, WRITEIO

STOP
Terminates program execution.
Syntax: STOP

Sample: STOP
IF Finis THEN STOP

Description:
When STOP is encountered, the program quits execution, I/O paths not in
COM are closed and all variables are discarded. CONT cannot be used after
STOP. To restart the program you must use the RUN statement. Use PAUSE to
temporarily halt program execution and CONT to resume program execution.

See Also:
CONT, PAUSE, RUN

STORE
Stores the BASIC program in a file.
Syntax: STORE file-specifier

Sample: STORE Vol$&Name$
STORE "Fullprg"

Description:
A new file of type PROG is created and the BASIC program currently in
memory is written to the file in binary form. If the file already exists, an error
is reported. Use RE-STORE to update an existing file. Use LOAD to re-enter the
program into the computer.

Porting to HP BASIC
HP BASIC PROG files and HTBasic PROG files are not compatible. To move
programs between the two environments, use ASCII program files.

See Also:
GET, LIST, LOAD, RE-SAVE, RE-STORE, SAVE, STORE KEY

STORE KEY
Stores the softkey definitions in a file.
Syntax: STORE KEY file-specifier

Sample: STORE KEY Path$&"MACROS.HTB"
STORE KEY "/usr/htb/keys"

Description:
A new file of type BDAT is created with the name specified. If the file already
exists, an error is reported. Use RE-STORE to update an existing file.

Using FORMAT OFF, the definition for any defined softkey is written to the file
by outputting two items. The first item is an integer, specifying the key
number. The second item is a string, giving the key definition. Use LOAD KEY
to re-enter the softkey macros into the computer.

FORMAT MSB FIRST is used to write the file. This makes key definitions
compatible with HP Workstations and can easily be used with HP BASIC.

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, RE-STORE KEY, SCRATCH KEY, SET
KEY

STORE SYSTEM
Stores BASIC and loaded BINs into a file.
Syntax: STORE SYSTEM file-specifier

Sample: STORE SYSTEM "Full"

Description:
In HP BASIC, this statement stores a copy of the operating system with all
loaded BINs already linked in. Under HTBasic, this statement is not used. Use
the HTBasic AUTOST file to load HTBasic device drivers.

SUB
Defines a subprogram and specifies formal parameters.
Syntax: SUB subprogram-name [(parameter-list)]

statements
[SUBEXIT]
statements
SUBEND

where: statements = zero, one or more program statements
including additional SUBEXIT statements.
parameter-list = [param [,param...]] [,] [OPTIONAL param [,param...]]
[,] = the optional comma is only needed when items
occur on both sides of it.
param = [REAL|INTEGER|COMPLEX] numeric-name [(*)[BUFFER]] |
string-name$ [(*) | BUFFER] | @io-path

Sample: SUB Unit1
SUB Link(String$)
SUB Procm(INTEGER Array(*),OPTIONAL @Lpr,Name$)
SUB Plot(Buff$ BUFFER,Coor)

Description:
SUB subprograms must follow the MAIN program's END statement. The first
line must be a SUB statement and the last line a SUBEND statement. The
lines between SUB and SUBEND statements define a subprogram which can
be called by other parts of the program with the CALL statement.

Unless the OPTIONAL keyword is specified, the number of CALL arguments
must match the number of SUB parameters; each argument must be of the
same type (numeric or string) as the corresponding parameter. Any
parameters to the right of the OPTIONAL keyword are optional in the CALL
statement. NPAR returns the number of arguments in the current CALL
statement. All variables defined in a subprogram that are not COM variables
are local to the subprogram. Upon each entry to the subprogram they are set
to zero.

A CALL to a subprogram, transfers control to the first statement of that
subprogram and starts executing from there. Execution proceeds normally
until either a SUBEND or SUBEXIT statement is executed, at which point
control returns to the statement after the CALL. The SUBEXIT statement
allows a return from the subprogram at points other than the SUBEND.
Multiple SUBEXITs are allowed in a subprogram. SUBEXIT may appear in an
IF statement, SUBEND can not.

See Also:
CALL, DEF FN, FN

SUM
Returns the sum of all elements in a numeric array.
Syntax: SUM(numeric-array)

Sample: S1=SUM(A2)
PRINT SUM(Array)

Description:
If the array has type REAL, then SUM returns a REAL value. If the array has
type INTEGER, then SUM returns an INTEGER value and the possibility of
INTEGER overflow exists during the summing of the array.

See Also:
CSUM, RSUM

SUSPEND INTERACTIVE
Deactivates program control keys.
Syntax: SUSPEND INTERACTIVE [,RESET]

Sample: SUSPEND INTERACTIVE,RESET

Description:
The normal functions of the program control keys CLR I/O, ENTER, PAUSE,
STEP and STOP, are disabled. The RESET key may also be disabled by
specifying the optional RESET keyword. The keys are only disabled while the
program is running.

RESUME INTERACTIVE, END, GET, LOAD, RUN, SCRATCH or STOP will re-enable
the program control keys as well as the RESET key.

See Also:
RESUME INTERACTIVE

SYMBOL
Allows the user to define label symbols.
Syntax: SYMBOL numeric-array(*) [,FILL] [,EDGE]

Sample: SYMBOL Code(*)
SYMBOL Hieroglyph(*),FILL,EDGE

Description:
SYMBOL uses a two-dimensional two-column or three-column array to plot a
User-defined symbol. They are created with moves and draws in the LABEL
font coordinate system, an area nine units wide and fifteen units high. Unlike
LABEL, SYMBOLallows coordinates outside the character cell.

The symbol is drawn using the current pen control and line type and will be
clipped at the clip boundary. A move is always done to the first point and the
current pen position is left at the last X,Y position specified in the array and is
not updated to the next character position. The CSIZE, LDIR and LORG
statements affect the SYMBOL statement.

See PLOT for an explanation of FILL, EDGE, and array operations supported
by SYMBOL. See the User's Guide for more information about the SYMBOL
coordinate system.

Porting to HP BASIC
LORG 5 moves the symbol origin from (0,0) to (5,8). In HP BASIC it moves the
origin to (4.5,7.5).

See Also:
CSIZE, LABEL, LDIR, LORG, PEN, PLOT, SET CHR

SYSBOOT
Reboots the computer.
Syntax: SYSBOOT

Sample: SYSBOOT

Description:
HTBasic does not support SYSBOOT, which under HP BASIC reboots the
computer. Since HTBasic runs as a guest of an operating system, it is
considered inappropriate to reboot the computer. Under some operating
systems, rebooting the computer inappropriately can cause loss of data. To
terminate HTBasic, use the QUIT statement.

See Also:
EXECUTE, QUIT

SYSTEM KEYS
Displays the System Softkeys Menu.
Syntax: SYSTEM KEYS

Sample: SYSTEM KEYS
IF Menu THEN SYSTEM KEYS

Description:
This statement has no effect if KBD CMODE is on. This statement is equivalent
to CONTROL KBD,2;0.

See Also:
KBD CMODE, KEY LABELS, KEY LABELS PEN, USER KEYS

SYSTEM PRIORITY
Sets the system priority to a specified level.
Syntax: SYSTEM PRIORITY priority

Sample: SYSTEM PRIORITY Degree
SYSTEM PRIORITY 2

Description:
The priority may be a numeric expression and is rounded to an integer in the
range of zero (the lowest priority) through fifteen (the highest priority). The
default priority is zero. ON END, ON ERROR, and ON TIMEOUT have higher
priorities than the highest user SYSTEM PRIORITY.

Any events defined at an equal or lower priority will be logged and not
executed until the system priority is lowered.

If the system priority is changed within a subprogram, it will be restored when
the subprogram ends.

See Also:
ON, SYSTEM$("SYSTEM PRIORITY")

SYSTEM$
Returns system status and configuration information.
Syntax: SYSTEM$(information)

where: information = a string-expression containing one of the strings from the table
below.

Sample: M=VAL(SYSTEM$("AVAILABLE MEMORY"))
PRINT "Version "&SYSTEM$("VERSION:HTBasic")

Description:
SYSTEM$ returns system information in a string. The information returned
depends on which of the following strings is specified in the
SYSTEM$command.

Porting to HP BASIC.    Minor differences in some SYSTEM$ responses exist
where appropriate to reflect hardware or operating system differences.

AVAILABLE MEMORY
Returns the available memory in bytes. In most cases the FRE function is
easier to use. The amount of available memory when HTBasic is started can
be specified with a command line switch. See FRE.

CRT ID
Returns a twelve character CRT identification string. A space in a position
indicates that capability is not present.

Bytes Meaning 

1 always "6".
2 always ":".
3-5 CRT width, for example " 80".
6 "H" if at least one display enhancement is supported,

 i.e. inverse, blink, underline. Not all CRTs support
all enhancements.

7 "C" if colors are available in at least one screen mode.
8 "G" if graphics are available.
9 "B" if the display is bit-mapped.
10-12 Maximum value for ALPHA PEN.

DISP LINE
The present content of the display line is returned. This allows you to write
subroutines that temporarily save off the display line content, DISP something
else and then restore the display line.

SYSTEM$("DISP LINE") is a new HTBasic function that is not available in HP
BASIC. It should not be used in programs that must be ported back to HP
BASIC.

DUMP DEVICE IS
Returns a string specifying the current DUMP DEVICE.

GRAPHICS INPUT IS
Returns a string specifying the current GRAPHICS INPUT IS    device.

KBD LINE
Returns a string whose content is the same as the current keyboard input line.

KEYBOARD LANGUAGE
Returns a string identifying foreign language keyboards. On some computers,
it is not possible for HTBasic to know the keyboard type. On these systems
"ASCII" is returned regardless of the actual keyboard.

LEXICAL ORDER IS
Returns the current language set by the LEXICAL ORDER IS command. "ASCII"
is the default.

MASS MEMORY
Returns a sixteen character string identifying types and numbers of mass
storage devices attached. On some computers, this information is not
available to HTBasic. On these systems, "0" is returned for each device type. If
the number of devices of any type exceeds nine, "*" is returned in that byte
position.

Bytes Meaning 
1 number of internal disk drives.
2-4 not assigned.
5 number of initialized EPROM cards (always 0).
6 number of bubble memory cards (always 0).
7-16 not assigned.

For the DOS version, the number of internal disk drives is taken from the
"Equipment Determination" BIOS call. For Windows and UNIX, the value is
always 0.

MASS STORAGE IS or MSI
Returns the current device and directory. MSI is an abbreviation for MASS
STORAGE IS and returns the same information.

PLOTTER IS
Returns a string specifying the current PLOTTER IS device.

PRINTALL IS
Returns a string specifying the current PRINTALL IS device.

PRINTER IS
Returns a string specifying the current PRINTER IS device.

PROCESS ID
Under multitasking operating systems such as UNIX, this call returns the
process ID of HTBasic. Under single-tasking operating systems such as DOS,
this call always returns "0".

SERIAL NUMBER
Returns a string containing the serial number. The number is unique for that
class of hardware. On a PC, the serial number is an eleven character string
read from the ID Module connected to the parallel port. If the serial number
can not be found, the string "11111111111" is returned.

SYSTEM ID
A string identifying the hardware system is returned. The DOS Version of

HTBasic uses the IBM PC System ID byte located at F000:FFFE to determine
what seven character string should be returned. The following table gives the
responses generated:

ID Byte Computer SYSTEM$("SYSTEM ID")
F8 PS/2 Model 80 "PS/2 80"
F9 PC Convertible "PC Conv"
FA PS/2 Model 30 "PS/2 30"
FB PC/XT "PC/XT    "
FC PC/AT, PS/2 Models 50/60 "PC/AT    "
FD PC Jr "PCjr      "
FE PC/XT "PC/XT    "
FF PC "PC          "
other Unknown "PC          "

Under Windows and NT, three numbers are returned, separated by commas.
The first number is the processor type, the second is the number of processors
and the third is the machine OEM ID, if it has one.

Under UNIX, HTBasic uses the machine name returned by "uname -m", which
may not be seven characters long.

SYSTEM PRIORITY
Returns a string containing the current system priority. Use VAL(SYSTEM$
("SYSTEM PRIORITY")) to retrieve the priority as a numeric value.

TIMEZONE IS
Under operating systems like DOS, which store the local time in the real time
clock, this call always returns "0". Under operating systems like UNIX, which
store Greenwich Mean Time in the real time clock, this call returns the number
of seconds difference between your local time and GMT. Negative values
represent timezones west of Greenwich.

TRIG MODE
Returns the current trigonometric mode, "DEG" for degrees and "RAD" for
radians.

VERSION:BASIC
Returns a string containing the HP BASIC version number emulated, i.e., "5.1",
"6.2", etc.

VERSION:HTB
Returns a string containing HTBasic version information. This is the same
information printed on the first line of the CRT when HTBasic starts.

This function can be useful for programs that run on both HP BASIC and
HTBasic systems, enabling them to determine which system they are currently
running on. The following example sets a variable according to the system
running the program:
10 SUB Which_system
20 COM /Which_system/Htbasic,Hpbasic
30 IF SYSTEM$("VERSION:HTB")="0" THEN
40 Hpbasic=1
50 ELSE
60 Htbasic=1
70 END IF

80 SUBEND

VERSION:OS
Returns a string containing operating system revision information. Under DOS,
the string is of the form "x.yy DOS" where x is the major revision and yy is the
minor revision.

Under Windows, the string is of the form "x.yy Windows/DOS" and under NT it
is "x.yy Windows NT". X is the major revision and yy is the minor revision.

Under UNIX, the string is of the form "x y", where x is the revision number
returned by "uname -r" (which may not begin with a numeric character) and y
is the system name returned by "uname -s". For example, "4.1.1 SunOS". Use
the UNIX command "man uname" for more information about uname.

VERSION:bin-name
Returns a string containing the version number of the binary named. Replace
bin-name with the name of the binary of interest. LIST BIN can be used to see
the version numbers for all loaded binaries.

WILDCARDS
Returns "OFF:" if wildcarding is turned off. Under UNIX if wildcarding is turned
on, this function returns "UX:e", where "e" is the escape character. Under DOS,
Windows and NT this function always returns "ON:". See WILDCARDS.

WINDOW SYSTEM
Returns "Console" under most versions of HTBasic. Under some versions it
returns the name of the current screen driver. See PLOTTER IS for an
explanation of screen drivers.

See Also:
DEG, DUMP DEVICE IS, GRAPHICS INPUT IS, PLOTTER IS, LEXICAL ORDER IS,
MSI, PRINTALL IS, PRINTER IS, RAD, SYSTEM PRIORITY

TAN
Returns the tangent of an expression.
Syntax: TAN(numeric-expression)

Sample: A=TAN(B)
Tangent=TAN(X)
PRINT "Tangent of";Angle;"=";TAN(Angle)

Description:
The tangent of an angle is the sine of the angle divided by the cosine of the
angle. The numeric expression is treated as an angle in the current
trigonometric mode: RADians or DEGrees. The default units are radians. TAN
is defined for all real numbers except ±PI/2 (±90 degrees) and other odd
multiples of PI/2 (90 degrees).

COMPLEX Arguments
TAN accepts either a COMPLEX or REAL argument and returns a value of the
same type. For COMPLEX arguments the angle must be specified in radians,
regardless of the current trigonometric mode. The real and imaginary parts of
TAN(Z) are calculated (using real arithmetic) as:

REAL(TAN(Z)) = SIN(2*REAL(Z))/D
IMAG(TAN(Z)) = SINH(2*IMAG(Z))/D

where:

D = COS(2*REAL(Z))+COSH(2*IMAG(Z))

The domain of TANHincludes all points in the complex plane except
CMPLX(PI/2,0) and other odd multiples of PI/2. Also, intermediate values
generated during the calculation of the function can also cause over or
underflow errors for very large or small values of Z.

See Also:
ACS, ASN, ATN, COS, SIN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

TANH
Returns the hyperbolic tangent of an expression.
Syntax: TANH(numeric-expression)

Sample: A=TANH(B)
Htangent=TANH(X)
PRINT "Hyperbolic Tangent of";Angle;"=";TANH(Angle)

Description:
TANH accepts either a COMPLEX or REAL argument and returns a value of the
same type. The argument must be specified in radians, regardless of the
current trigonometric mode. The real and imaginary parts of TANH(Z) are
calculated (using real arithmetic) as

REAL(TANH(Z)) = SINH(2*REAL(Z))/D
IMAG(TANH(Z)) = SIN(2*IMAG(Z))/D

where:

D = COSH(2*REAL(Z))+COS(2*IMAG(Z))

The domain of TANH includes all points except CMPLX(0,PI/2+PI*K), where K
can be any integer. However, intermediate values generated during the
calculation of the function can cause over or underflow errors for very large or
small values of Z.

See Also:
ACSH, ASNH, ATNH, COSH, SINH

TIME
Converts a time-of-day string to seconds after midnight.
Syntax: TIME(string-expression)

Sample: Seconds=TIME(Clock$)
SET TIME TIME("3:56:30")
ON TIME TIME("17:00") RECOVER Athome

Description:
A string expression in the form HH:MM[:SS] is converted into an equivalent
number of seconds past midnight in the range 0 through 86,399. Leading
blanks and non-numeric characters are ignored.

See Also:
DATE, DATE$, TIME$, SET TIME, SET TIMEDATE, TIMEDATE

TIME$
 Returns a formatted time of day string.
Syntax: TIME$(numeric-expression)

Sample: PRINT TIME$(TIMEDATE)
Later$=TIME$(Sec+3600)

Description:
TIME$ takes a numeric-expression representing seconds past midnight and
forms a time of day string with the format HH:MM:SS. If TIMEDATE is used as
the argument, then TIME$ returns the current time of day.

See Also:
DATE, DATE$, TIME, SET TIME, SET TIMEDATE, TIMEDATE

TIMEDATE
Returns the current time and date from the clock.
Syntax: TIMEDATE

Sample: PRINT "The operation took ";TIMEDATE-Start;" seconds"
DISP TIME$(TIMEDATE),DATE$(TIMEDATE)
DISP "Seconds since midnight = ";TIMEDATE MOD 86400

Description:
A real number, representing the present time and date is returned. To convert
the number to the familiar date and time formats, use TIME$ and DATE$. The
value returned is loosely based on the Julian Period, which began in 4713 B.C.
To return the current Julian Day, use the following function. Remember that
the Julian Day changes at noon.
10 DEF FNJd_now
20 RETURN ((TIMEDATE-4300) DIV 86400)-1
30 FNEND

See Also:
DATE, DATE$, TIME, TIME$, SET TIME, SET TIMEDATE

TIMEZONE IS
Corrects between GMT and local time for HP BASIC/WS.
Syntax: TIMEZONE IS seconds

where: seconds = numeric-expression

Sample: IF California THEN TIMEZONE IS -8*3600

Description:
HTBasic does not require this statement and will return an error if an attempt
is made to execute it. The editor will allow it to be entered and the syntax
checker will check it for correctness to allow you to develop programs and run
them under HP BASIC. HP BASIC requires this statement for two reasons: 1) HP
BASIC/UX keeps a time clock independent of the UNIX time and 2) it is
possible to boot HP BASIC/WS on a computer whose real-time clock is set to
Greenwich Mean Time (GMT)

On UNIX systems the system clock is set to GMT and some means is employed
to tell the system the difference between GMT and local time. This is usually
an environment variable, TZ or TZNAME. When your computer was first
installed, your system administrator set the timezone. HTBasic automatically
uses the timezone being used by UNIX.

SYSTEM$("TIMEZONE IS") returns the value currently in effect. The offset
specifies the difference in seconds between GMT and local time. Negative
values specify timezones west of GMT, positive values specify timezones east
of GMT. The following table gives offsets in hours for standard time. Multiply
the hours given by 3600 before comparing to values returned by SYSTEM$
("TIMEZONE IS").

Timezone Hours
Eastern European 2
Middle European 1
Western European 0
Atlantic -4
Eastern -5
Central -6
Mountain -7
Pacific -8

See Also:
DATE, DATE$, TIME, TIME$, SET TIME, SET TIMEDATE, TIMEDATE

TRACE
Controls the display of information about a running program.
Syntax: TRACE ALL [start-line [,end-line]]

TRACE OFF
TRACE PAUSE [line]

where: line = line-number | line-label

Sample: TRACE ALL 1000,1200
TRACE OFF
TRACE PAUSE 250

Description:
TRACE ALL traces program flow and variable assignments. Either the entire
program or just a range of program lines may be traced. The trace output is
sent to the message line and displays the program line numbers and any
modified simple numeric or string variable and its new value. If a full array is
modified the entire array is not displayed. If print-all mode is on, then the
trace output is also sent to the PRINTALL IS device.

TRACE OFF turns off all tracing functions.

TRACE PAUSE will PAUSE program execution before the specified line and will
display the next program line to be executed. If no line is specified, the
program pauses before the next line is executed and the current TRACE
PAUSE line is deactivated. Tracing slows program execution.

See Also:
CAUSE ERROR, CLEAR ERROR, PRINTALL IS, XREF

TRACK
Enables or disables tracking of the locator position on the display device.
Syntax: TRACK device-selector IS {ON | OFF}

Sample: TRACK Plot IS ON
TRACK 702 IS OFF

Description:
ON enables tracking of the current locator on the PLOTTER IS device during
DIGITIZE statements. Tracking stops when a point is digitized and the echo is
left at the location of the digitized point. When the display device is a plotter,
the pen position tracks the locator. When the CRT is the display device, a
crosshair tracks the locator. OFF disables tracking of the current locator. To
turn off the crosshair, use SET ECHO with coordinates that are off screen

The current locator is defined by a GRAPHICS INPUT IS statement and the
current display device is defined by a PLOTTER IS statement. If the device-
specifier is not the same as the current PLOTTER IS device, an error is
generated.

See Also:
DIGITIZE, GRAPHICS INPUT IS, PLOTTER IS, READ LOCATOR, SET ECHO, SET
LOCATOR, WHERE

TRANSFER
Performs an unformatted I/O transfer.
Syntax: TRANSFER @source-io-path TO @dest-io-path [; parameters]

where: parameters = [eot-term-list] [,] [EOR(eor-term-list)] [,] [type]
[,] = the optional comma is only needed when items
occur on both sides of it.
eot-term-list = eot-term [,eot-term...]
eot-term = COUNT bytes |
DELIM character |
END |
RECORDS number
eor-term-list = eor-term [,eor-term...]
eor-term = COUNT bytes | DELIM character | END
type = { CONT | WAIT } [, type]
bytes, number = numeric-expressions, rounded to integers
character = string-expression, zero or one character

Sample: TRANSFER @Device TO @Buffer
TRANSFER @Buff TO @Logger;CONT
TRANSFER @Rs232 TO @Buff;DELIM CHR$(13)
TRANSFER @Path TO @Buff;RECORDS 16,EOR(END)

Description:
The TRANSFER statement sets up unformatted data transfers between
memory and a device. The data transfer normally occurs in the "background."
That is, the BASIC program continues to run in the "foreground"
simultaneously with the background transfer. Optionally, the TRANSFER
statement can wait until the transfer is complete before continuing.

TRANSFER is not supported on all interfaces or by all versions of HTBasic.
The interface hardware must have the necessary circuitry and the device
driver must have the proper software support.

Buffers
The transfer operation must be between a buffer and a device. A buffer must
be declared as the source for an outbound transfer or as the destination of an
inbound transfer. One buffer can simultaneously be used for an outbound
transfer and an inbound transfer. A transfer directly between two devices is
not supported.

Buffers may be unnamed or named. An unnamed buffer is created, assigned
an I/O path and given its size by the ASSIGN statement. A named buffer is a
previously declared REAL, INTEGER or COMPLEX array or a string scalar
(declared in a COM, DIM, INTEGER, REAL or COMPLEX statement) which has
been ASSIGNed to an I/O path. Unnamed buffers are usually preferred because
the size can be as large as available memory and no side-affects are possible
by accessing the buffer through its variable name.

Buffers are circular; each buffer has a fill and empty pointer as well as a count.
The fill pointer is used by an inbound transfer to identify the next location for
data to be stored (inserted). The empty pointer is used by an outbound
transfer and points to the next location for data to be output (removed). A
value of one for either pointer means the first byte of the buffer. When the fill

and empty pointers have the same value, the count can be examined to
determine whether the buffer is empty or full.

The I/O path assigned to the buffer is called the buffer-I/O path. The I/O path
assigned to the device is called the non-buffer-I/O path. The buffer should be
accessed only with the buffer-I/O path. The count, fill and empty pointers can
be examined using STATUS on the buffer-I/O path. OUTPUT @buf or an
inbound transfer are used to place data into a buffer. ENTER @buf or an
outbound transfer are used to read and remove data from a buffer. The
variable name of a named buffer should generally not be used to access the
data in the buffer since the data in the buffer is unformatted and may even
have the wrong byte order.

Transfer Type
The type of the transfer can be specified as CONT, WAIT, or left unspecified.

If WAIT is specified, the transfer executes in foreground mode. Program
execution does not proceed beyond the TRANSFER statement until the
transfer terminates. If an error occurs, it is reported with the line number of
the TRANSFER statement. If WAIT is not specified, execution continues past
the TRANSFERstatement and the transfer takes place in the background.
Then if an error occurs, the error is not reported until the non-buffer-I/O path is
referenced. The error line reported is not that of the TRANSFER, but of the
statement where the non-buffer-I/O path was referenced.

If CONT is specified, TRANSFER executes continuously. For an inbound
transfer, execution pauses when the buffer is full and continues when space is
available in the buffer. For an outbound transfer, execution pauses when the
buffer is empty and continues when the buffer has data available. If CONT is
not specified, the end-of-transfer occurs when an outbound transfer empties
the buffer or an in-bound transfer fills the buffer. Or if a termination method
has been specified as explained below, the transfer terminates when the
condition occurs.

Both WAIT and CONT can be specified together if a transfer is already active
for the buffer in the opposite direction. The transfer will be continuous, but will
run in the foreground.

If neither WAIT nor CONT is specified, the transfer occurs in the background.
The end-of-transfer occurs when an outbound transfer empties the buffer or
an in-bound transfer fills the buffer. Or if a termination method has been
specified as explained below, the transfer terminates when the condition
occurs.

Transfer Method
A couple of methods are available for accomplishing the transfer: DMA (direct
memory access) and interrupts. DMA is the fastest method and will be used
automatically, if possible. A DMA channel must be available, the interface
must have the necessary hardware and DELIM can not have been specified. If
DMA can't be used, interrupts are used.

Transfer Termination
An eot-term-list can be used to specify a list of conditions which cause the
transfer to end. The following end-of-transfer termination conditions, eot-term,
can be used:

If COUNT is specified, the transfer terminates after the specified number of
bytes has been transferred.

If DELIM is specified for an inbound transfer, then the transfer is terminated
after the specified character is detected. DELIM is not allowed with outbound
transfers. If the delimiter string is zero length, delimiter checking is disabled.
DELIM prevents DMA from being used; interrupts will be used instead.

If END is specified for an inbound transfer, the transfer terminates when the
device dependent signal is received. On the IEEE-488 interface, END is the
EOI signal. When an inbound transfer is terminated in this way, bit 3 of
register 10 is set. For an outbound transfer, END does not specify a
termination condition, but rather specifies that the device dependent signal
(EOI) is sent with the last byte sent.

If RECORDS is specified, the transfer terminates when the specified number
of records has been transferred. An eor-term-list must be specified, defining
what will be considered a record for the purpose of this particular transfer. For
inbound transfers the legal end-of-record termination conditions, eor-term, are
COUNT, DELIM and END or some combination of these three. For outbound
transfers only COUNT can be used to define a record, although END can be
used to specify that the device dependent signal (EOI) is sent with the last
byte of each record.

The ON EOR and ON EOT statements can be used to generate an event when
an end-of-record or end-of-transfer occurs. The WAIT FOR EOR and WAIT FOR
EOT statements can be used to stop further statement execution until an end-
of-record or end-of-transfer occurs.

To terminate a CONT, continuous mode, outbound transfer without leaving
data in the buffer, use the following sequence of statements:

CONTROL @Buff,8;0
WAIT FOR EOT @Non_buff

Hanging and Premature Termination
HTBasic will not enter a stopped state until all transfers are completed.
Likewise, HTBasic will not exit a program context until transfers started in that
context are finished. The following statements also cause the computer to
"hang" until all transfers complete: GET, LOAD, RETURN, STOP, SUBEND,
SUBEXIT or modifying a program line.

The ABORTIO statement can be used to prematurely terminate a transfer and
free the computer. The RESET key will also terminate any active transfers, but
ABORTIO is preferred.

Outbound TRANSFER
An outbound transfer has the form:

TRANSFER @Buff TO @Non_buff

If another outbound TRANSFERstatement is executed while an outbound
TRANSFER is occurring, HTBasic waits for completion of the first before
starting the second. Any EOT/EOR events caused by the first transfer will then
be logged and may be serviced before the next program line.

Inbound TRANSFER

An inbound transfer has the form:

TRANSFER @Non_buff TO @Buff

If another inbound TRANSFERstatement is executed while an inbound
TRANSFER is occurring, HTBasic waits for completion of the first before
starting the second. Any EOT/EOR events caused by the first transfer will then
be logged and may be serviced before the next program line.

See Also:
ABORTIO, ASSIGN, ENTER, ON EOR, ON EOT, OUTPUT, RESET, STATUS, WAIT

TRIGGER
Sends a trigger message to all or selected devices on the IEEE-488.
Syntax: TRIGGER {@io-path | device-selector}

Sample: TRIGGER @Gpib
TRIGGER 712
TRIGGER Dev

Description:
TRIGGER sends a trigger message to a specified device or to all LISTEN
addressed devices on the IEEE-488 bus. The computer must be the active
controller. If an I/O path is specified, it must be assigned to the IEEE-488
interface or to one or more IEEE-488 devices.

If primary device addresses are specified bus action is: ATN, UNL, LAG, GET. If
only an interface select code is specified the bus action is: ATN, GET.

See Also:
ABORT , CLEAR, INTR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST,
SEND, SPOLL

TRIM$
Removes leading and trailing spaces from a string.
Syntax: TRIM$(string-expression)

Sample: A$=TRIM$(B$)
Heading$=TRIM$(" Title ")

Description:
The TRIM$ string function removes leading and trailing spaces from a string.
The embedded spaces are not affected.

See Also:
CHR$, LWC$, NUM, REV$, POS, RPT$, UPC$, VAL, VAL$

UNLOCK
Removes exclusive access protection from a LOCKed file.
Syntax: UNLOCK @io-path

where: io-path = name assigned to a file.

Sample: UNLOCK @Proprietary
IF Unsecure THEN UNLOCK @File

Description:
File locking capabilities depend on the operating system HTBasic is running
on. If the operating system does not support it, this command is ignored. An
ASSIGN @PathTO * will UNLOCK and then close the file.

A file can have multiple locks on it. The file remains locked until a
corresponding number of UNLOCKstatements have been executed. LOCKing a
file should be a temporary action of short duration so that fair access to the
file is provided to all users.

Under DOS or Windows, SHARE may need to be loaded in order to share, lock
and unlock files. Consult the manufacturer's documentation for your system. If
SHARE is necessary, but not currently installed, the LOCK will fail with an error
number 1.

See Also:
ASSIGN, LOCK

UPC$
Converts characters in a string to uppercase characters.
Syntax: UPC$(string-expression)

Sample: A$=UPC$(B$)
Capital$=UPC$(Names$)

Description:
LEXICAL ORDER IS determines the lowercase to uppercase correspondence. If
the lexical order is a user-defined table and the optional upper and lowercase
conversion rules were not specified, the upper to lowercase correspondence is
determined by the standard lexical order

See Also:
CHR$, LWC$, NUM, POS, REV$, RPT$, TRIM$, VAL, VAL$

USER KEYS
Displays the specified User Softkey Menu.
Syntax: USER menu-number KEYS

Sample: USER Menu KEYS
IF Two THEN USER 2 KEYS

Description:
The menu number may be a numeric expression and is rounded to an integer.
It should be in the range one to three.

See Also:
KBD CMODE, KEY LABELS, KEY LABELS PEN, SYSTEM KEYS

VAL
Converts a string into a numeric value.
Syntax: VAL(string-expression)

Sample: I=VAL(Response$)
IF VAL(SYSTEM$("VERSION:OS"))<3 THEN CALL Alternate

Description:
There must be a digit, a plus or minus sign or a decimal point as the first non-
blank character of the string. The remaining characters are scanned until a
non-numeric character is seen. If an E is present the characters must form a
valid number in scientific notation format. VAL is the opposite of the VAL$
function.

See Also:
DVAL, DVAL$, IVAL, IVAL$, NUM, POS, VAL$

VAL$
Converts a number into its string representation.
Syntax: VAL$(numeric-expression)

Sample: A$=VAL$(12345)
CREATE "DATA."&VAL$(Version)

Description:
The returned string is in default print format, except that no trailing blanks are
attached to the string and no leading blank is attached to positive numbers.
VAL$ is the opposite of the VAL function.

See Also:
DVAL, DVAL$, IVAL, IVAL$, NUM, POS, VAL

VIEWPORT
Defines the area of the graphic device used for output.
Syntax: VIEWPORT left,right,bottom,top

Sample: VIEWPORT Left,Right,Bottom,Top
VIEWPORT 0,75,10,30

Description:
VIEWPORT selects the area of the screen (or device) to be used for graphics
output and sets the soft-clip boundary limits. The coordinate system defined
by WINDOW or SHOW will be mapped into this area. The left limit must be less
than the right limit and the bottom limit must be less than the top limit. The
default viewport is the entire surface.

By changing the VIEWPORTparameters, you change the proportions, size and
position of the drawing surface. Graphic output is automatically scaled to fit
this drawing surface. Changing the viewport does not affect any currently
displayed graphics, only graphics that you subsequently generate.

Graphic Display Unit Parameters
VIEWPORT soft-clip boundary parameters are defined in GDUs (Graphic
Display Units). GDUs are units that describe the physical bounds of the display
area on the graphic output device. By definition, Graphic Display Units are
1/100 of the Y axis of a plotting device. A unit in the X direction and the Y
direction is of the same length. The RATIO function returns the X to Y hard-clip
limits ratio and can be used to determine the VIEWPORT soft-clip limits.

The VIEWPORT soft-clip limits should not exceed the hard-clip limits. By
default the left limit is zero, the right limit is the X axis hard-clip limit, the
bottom limit is zero and the top limit is the Y axis hard-clip limit.

Porting Issues
In HTBasic, GDUs are always 100 in the Y direction. In HP BASIC, if the ratio is
less than 1, the X axis is 100 GDUs and the Y axis is (100*RATIO) GDUs long; if
the ratio is greater than 1, the Y axis is 100 GDUs and the X axis is
(100*RATIO) GDUs long.

See Also:
CLIP, RATIO, SHOW, WINDOW

WAIT
Waits a specified time or for TRANSFER events.
Syntax: WAIT seconds

WAIT FOR {EOR|EOT} @io-path

where: seconds = numeric expression

Sample: WAIT Sec/7
WAIT FOR EOR @Device WAIT FOR EOT @Non-buffer

Description:
If seconds are specified, the computer pauses execution for the length of time
specified. The seconds argument must be in the range 0 to 2,147,483.648
seconds. The number is rounded to the nearest millisecond, or to the
resolution of the computer clock.

The WAIT FOR EOR statement waits until an end-of-record event occurs
during a TRANSFER. Similarly, the WAIT FOR EOT statement waits until any
TRANSFER active on the I/O path is complete. The I/O path must be the I/O
path used in the TRANSFER to specify the device. Using the I/O path assigned
to the buffer will cause an error. If the I/O path is not involved in an active
TRANSFER, the statement has no effect.

See Also:
ON DELAY, PAUSE

WHERE
Returns the logical pen position.
Syntax: WHERE x-variable, y-variable [,string-name$]

Sample: WHERE X,Y
WHERE Time,Temp,Status$

Description:
The WHERE statement returns the current logical pen position in the x and y
numeric variables and pen status information in the optional string variable.

The optional string variable must be dimensioned to a length of at least three
bytes. The three string characters are interpreted as follows:

Byte Meaning 

1 Pen Status - Up/Down status of the Pen. If the character
is a "1" then pen is down; if it is a "0" then the pen is up.

2 Comma delimiter character.
3 Clip Indicator - If the character is a "0", then the

point is outside the P1, P2 limits. If a "1", the point
is inside the P1, P2 limits, but outside the viewport.
If a "2" then it's inside the viewport.

See Also:
DIGITIZE, GRAPHICS INPUT IS, PLOTTER IS, READ LOCATOR, SET ECHO, SET
LOCATOR, TRACK

WHILE
Repeats an action while a condition is true.
Syntax: WHILE numeric-expression

statements
END WHILE

where: statements = zero, one or more program statements

Sample: 100 WHILE X<1000
. . .
200 END WHILE

Description:
The WHILE expression is evaluated and if false (zero), execution continues
with the statement following the END WHILE. If true (non-zero), then the
statements in the WHILE loop are executed. When the END WHILE is
reached, execution branches back to the WHILE statement where the
expression is again evaluated.

See Also:
FOR, LOOP, REPEAT

WILDCARDS
Enables or disables wildcard support.
Syntax: WILDCARDS [OFF | DOS | UX; ESCAPE char]

where: char = string expression evaluating to "\", "'" or ""

Sample: WILDCARDS OFF
WILDCARDS DOS
WILDCARDS UX;ESCAPE "\"

Description:
Wildcards are characters which can be used in a filename as a template to
select a group of files to be operated upon. A filename with wildcard
characters in it will be compared with existing filenames using special rules
and all filenames that "match" are acted upon. It is necessary in HP BASIC/WS
to support wildcards in many commands since no operating system is
available. Under HTBasic, wildcards can be used directly in operating system
commands using the EXECUTE statement. However for convenience,
wildcards are supported in the CAT statement.

DOS, Windows and NT
Under DOS and Windows NT, the question mark "?" and the asterisk "*" are
the wildcard characters. If the WILDCARDS statement is executed it will
return an error because wildcarding is always on. SYSTEM$("WILDCARDS")
always returns "ON:". Wildcarding never needs to be turned off because the
wildcard characters are not legal filename characters.

These are the rules used to match an actual filename with wildcards:

1. The "?" character will match any one character in the same position of an
actual filename. For example, the string "?AT" will match the strings "CAT",
"BAT", "MAT" or any other string three letters long which has an "A" as the
second letter and "T" as the third letter.

2. The "*" character will match zero or more characters. For example, "*" will
match all filenames. "F*" will match all filenames starting with the letter "F".
"*.BAS" will match all filenames which have the ".BAS" extension.

Under DOS and Windows 3.1, no character can follow "*" except ".". For
example, "*ROB" matches all filenames under DOS and Windows 3.1, but only
filenames ending with "ROB" under Windows 96 and Windows NT.

FAT file systems with long file names exhibit an unexpected behavior. If the
wildcards match either the 8.3 name or the long name, the file is considered
to match. The state of CONFIGURE LONGFILENAMES has no effect.

UNIX Usage Notes
By default, wildcarding is ON in HTBasic and the ESCAPE character is the
backslash, "\". The ESCAPE character can be set to a backslash or a forward
apostrophe, "'". If an empty string is specified, then there will be no ESCAPE
character.

The wildcard rules for HTBasic are similar, but slightly different from the rules
used by the UNIX shells (i.e. sh, csh, etc.). For shell rules, see the proper UNIX
manuals. The following rules apply to HTBasic:

1. The "?" character will match any one character in the same position of an
actual filename. For example, the string "?AT" will match the strings "CAT",
"BAT", "MAT" or any other string three letters long which has an "A" as the
second letter and "T" as the third letter.

2. The "*" character will match zero or more characters starting at that
position. For example, "*" will match all filenames. "F*" will match all
filenames starting with the letter "F". "*.BAS" will match all filenames which
end with ".BAS". And "*ROB" will match all files ending with "ROB". Users
familiar with DOS will note that "*ROB" is legal under UNIX, but not under
DOS.

3. A set of characters can be specified to match at a particular character
position. The set is specified in square brackets. Characters can be specified in
the set by enumeration or by range. A range of characters is specified by
giving the first and last characters in the range, separated by a minus sign,
"-". An example set is "[CAE-G]", which specifies the set of five characters: A,
C, E, F, G. When a range is specified, the NUM of the first character should be
less than the NUM of the second. Any character whose NUM lies between
these two characters is also included in the set. As an example of set usage,
"[A-Z]*" matches all filenames which begin with an uppercase character.
"[cbm]at" will only match the strings "cat", "bat", "mat".

4. A set of characters can be specified to NOT match at a particular position. If
the first character in a set, as explained above, is an exclamation point, "!",
then the character will match only if it is not one of the characters in the set.
For example, "[!AEIOUaeiou]*" will match all filenames that don't begin with a
vowel. "*[!a-z]" will match all filenames that don't end with a lowercase letter.

5. Preceding any character with the ESCAPE character causes that character
to be treated as a normal character even if it is a wildcard character. For
example, suppose the ESCAPE character is the default "\" and suppose you
wish to catalog all files starting with the "?" character. Specifying "?*" will not
work; it will match every file. You must specify "\?*". The "?", "*", "[" and the
ESCAPE character must be preceded by the ESCAPE character when used as
a normal character. For example (assuming "\" is the current ESCAPE
character), "\\\?*\[\A\B" will match one file named "\?*[AB".

6. By UNIX convention, files starting with a "." are hidden from normal
catalogs. To see them, the "." must be specified explicitly. ".*" will match all
files normally hidden.

Several warnings are in order for users moving from DOS to UNIX. DOS treats
the period, "." as a special character, while UNIX does not. The directory
separator character is "\" under DOS, but "/" under UNIX. The DOS "*" wildcard
cannot be followed by any character besides ".". UNIX has no such restriction.

See Also:
CAT, SYSTEM$

WINDOW
Sets the bounds for displayable graphics data in user defined units.
Syntax: WINDOW left,right,bottom,top

Sample: WINDOW 0,X,-100,100*X*RATIO
WINDOW -10,10,0,50
WINDOW 10,-10,50,0

Description:
WINDOW defines the units to be displayed within the VIEWPORT or the hard-
clip boundaries. They can be any units of measure you wish to work with
(inches, miles, years, etc.). The default WINDOW setting is equal to the
default VIEWPORT setting.

The WINDOW and SHOW statements differ in how they map data onto the
viewport. WINDOW may use non-isotropic units (the X and Y units are of
different lengths); whereas SHOW uses isotropic units (the X and Y units are of
equal length).

An image can be "mirrored" about the X or Y axes by reversing the order of
the limits for each dimension by specifying the high value before the low
value.

See Also:
CLIP, SHOW, VIEWPORT

WRITEIO
Writes to a hardware register or a memory byte/word.
Syntax: WRITEIO interface-select-code, hardware-register; data

WRITEIO special-interface, address; data

where: hardware-register, data = numeric-expressions rounded to integers
special-interface = numeric-expression rounded to integer, legal
values are explained in the description
address = numeric-expression rounded to a linear address

Sample: WRITEIO Centronix,0;&HAA
WRITEIO -9826,Address;New_value
WRITEIO 8080,Ioadd;BINIOR(Oldata,&H80)

Description:
Hardware Registers

The specified data value is written to a hardware interface register.
READIO/WRITEIO operations should not be mixed with STATUS/CONTROL
operations. Do not attempt to use READIO/WRITEIOregisters unless you are
very familiar with the hardware. Use the STATUS/CONTROL registers instead.
The hardware manuals for your computer should be consulted for complete
documentation on the interface hardware. The User's Guide lists
READIO/WRITEIOregisters for the interface device drivers included with
HTBasic. Optional interface device drivers include documentation for the
registers.

READIO/WRITEIO registers in HTBasic are not compatible with HP BASIC
READIO/WRITEIOregisters when the interface hardware is not the same.
TransEra's IEEE-488 card uses the same IEEE-488 chip as HP's HP-IB, therefore
the READIO/WRITEIO registers are identical. The serial interface hardware
registers differ not only if the UART chip is different, but also if the circuitry
surrounding the chip is different. The TransEra GPIO interface is
READIO/WRITEIO compatible with HP's GPIO.

Special Interface Select Codes
There are a number of special interface select codes which can be used with
the WRITEIO statement. The legal values for special-interface are given in the
following paragraphs. For compatibility with earlier releases of HTBasic,
WRITEIO 8080,L and WRITEIO -8080,L are still supported but should be
replaced with OUT and OUTW, respectively.

POKE Memory
WRITEIO 9826,L;V and WRITEIO -9826,L;V are used to "poke" the value V
into a byte or word of memory, respectively. L specifies the address of the
byte/word to poke. If L is odd when doing a word operation, the even address
L-1 is used.

Under the DOS Version, L specifies a linear process address, not a physical
address. To poke into the first megabyte of physical memory, use 8452
instead of 9826.

Under Windows and NT, L specifies an address within the HTBasic process.

Under UNIX, L specifies an address within the HTBasic process. The special

interface select code 8452 should be used instead of 9826 to poke physical
addresses rather than process addresses. Poking physical memory is only
possible if the /dev/mem device is writeable by the HTBasic process. Note the
following warning.

Warning: Poke should only be done on addresses returned by
READIO(9827,I)! Poking any other location can cause your system to crash,
data to be lost and damage to your computer hardware. Use of this function
for any other address is unsupported, and TransEra cannot be held responsible
for any consequences.

Calling Assembly Language Subroutines
WRITEIO processor,L;V can be used to call small assembly language
subroutines which have been previously stored in an array. "processor" is an
integer specifying the type of code stored in the array. On 68000 class
computers, "processor" should be 9827. On 386/486 class computers running
in protected mode (the DOS and Windows versions), "processor" should be
8386. V specifies a value to be placed in the main data register (i.e., d0, AX or
EAX) before the subroutine is called. The assembly language routine should be
terminated with an 'rts' statement on 68000 computers, and a 'retn' with the
DOS Version.

Assembly language programming requires extensive knowledge and is not
provided for the casual programmer. If you wish to program in assembly, be
prepared to invest a large amount of time. Technical assistance will be
provided at the regular consulting rates.

See Also:
CONTROL, INP, OUT, READIO, STATUS

XREF
Generates a cross reference of a program.
Syntax: XREF [[SUB] sub-name] [: option]

XREF [#device-selector [; [SUB] sub-name]] [: option]

where: sub-name = subprogram-name | FN function-name[$] |
string-expression
option = CM | IO | LL | LN | NF | NV | SB | SF | SV| UN

Sample: XREF
XREF Trigger:NV
XREF #701;Launch

Description:
XREF generates a cross reference list of line labels and numbers, io-path
names, numeric and string variables, subprograms, functions and COM block
names. It also lists the number of unused symbol table entries. The listing is
sent to the PRINTER IS device unless a device selector is specified.

Optional parameters include:

Option Meaning
CM Common Block Names
IO I/O Path Names
LL Line Labels
LN Line Numbers
NF Numeric Functions
NV Numeric Variables
SB SUB Subprograms
SF String Functions
SV String Variables
UN Unused Entries

If a reference is a SUB parameter, declared in a COM, COMPLEX, DIM, REAL or
INTEGER statement or a line label, it is marked by the "<-DEF" marker. After
each program context, the number of unused symbol table entries is
displayed. If the subprogram name is specified as MAIN, the MAIN context is
cross-referenced.

Subprogram Pointer
If a string expression specify the subprogram name in the XREF statement,
the string expression is called a subprogram pointer because it "points" to the
subprogram rather than explicitly naming it. As the expression changes, the
pointer points to different subprograms. The subprogram must be specified
with the initial character in uppercase, and subsequent characters in
lowercase. Subprogram pointers can also be used in CALL, DELSUB, INMEM,
and LOADSUB statements.

Porting to HP BASIC
The use of subprogram pointers in XREF is a new HTBasic feature that is not
available in HP BASIC. It should not be used in programs that must be ported
back to HP BASIC.

See Also:

PRINTALL IS, TRACE

Error Codes
1 to 25
Error 1 Missing Option or Configuration Error.
Error 2 Memory Overflow.
Error 3 Line not Found in Current Context.
Error 4 Improper RETURN.
Error 5 Improper Context Terminator.
Error 6 Improper FOR/NEXT Matching.
Error 7 Undefined Function or Subprogram.
Error 8 Improper Parameter Matching.
Error 9 Improper Number of Parameters.
Error 10 String Type Required.
Error 11 Numeric Type Required.
Error 12 Attempt to Redeclare Variable.
Error 13 Array Dimensions not Specified.
Error 14 OPTION BASE not allowed here.
Error 15 Invalid bounds.
Error 16 Improper or Inconsistent Dimensions.
Error 17 Subscript out of Range.
Error 18 String Overflow or Sub-string Error.
Error 19 Improper Value or out of Range.
Error 20 INTEGER overflow.
Error 22 REAL overflow.
Error 24 Trig argument too large.
Error 25 Magnitude of ASN or ACS >> 1.0

Error Codes
26 to 49
Error 26 Zero to negative power.
Error 27 Negative base to non-integer power.
Error 28 LOG or LGT of a non-positive number.
Error 29 Illegal floating point number.
Error 30 SQR/SQRT of a negative number.
Error 31 Division (or MOD) by zero.
Error 32 String is not a valid number.
Error 33 Improper arg for NUM or RPT$.
Error 34 Line not an IMAGE Statement.
Error 35 Improper IMAGE Statement.
Error 36 Out of data in READ.
Error 38 TAB or TABXY not allowed here.
Error 40 Improper COPYLINES, MOVELINES or renumber.
Error 41 First line number greater than second.
Error 43 Non-square Matrix.
Error 44 Result cannot be an operand.
Error 46 No program in memory.
Error 47 Incorrect or inconsistent COM declarations.
Error 49 Branch destination not Found.

Error Codes
50 to 99
Error 51 File not currently Assigned.
Error 52 Improper MSUS.
Error 53 Improper File Name.
Error 54 Duplicate File Name.
Error 55 Directory Overflow.
Error 56 File or Path not found.
Error 58 Improper File Type.
Error 59 End of File or Buffer.
Error 60 End of Record.
Error 64 Mass Storage Media Overflow.
Error 65 Incorrect Data Type.
Error 67 Illegal Mass Storage Parameter.
Error 68 Syntax Error during GET.
Error 72 Drive Not Found.
Error 80 Disk changed or not in Drive.
Error 82 Mass Storage unit not present.
Error 83 Write Protected.
Error 84 Sector not Found.
Error 85 Media not Initialized.
Error 88 READ Data Error.
Error 89 Checkread error.
Error 90 Mass storage system error.

Error Codes
100 to 149
Error 100 Numeric IMAGE field for String Item.
Error 101 String IMAGE field for Numeric Item.
Error 102 Numeric Field specifier is too Large.
Error 103 Data item has no corresponding IMAGE specifier.
Error 105 Numeric Field specifier is too Small.
Error 106 IMAGE exponent field too Small.
Error 107 IMAGE sign specifier missing.
Error 117 Too many nested structures.
Error 118 Too many structures in context.
Error 120 Not allowed while program running.
Error 122 Program is not Continuable.
Error 128 Line too long during GET or a CHANGE.
Error 131 Unrecognized Keycode.
Error 133 DELSUB of non-existent or busy subprogram.
Error 134 Improper Scratch Statement
Error 136 REAL underflow.
Error 141 Variable already allocated.
Error 142 Variable not Allocated.
Error 143 Reference to missing OPTIONAL Parameter.
Error 145 May not build COM at this time.
Error 146 Duplicate Line label in this Context.

Error Codes
150 to 299
Error 150 Bad select code or device specifier.
Error 153 Insufficient data for ENTER.
Error 155 Improper Interface Register number.
Error 157 No ENTER terminator found.
Error 158 Improper IMAGE specifier or nesting.
Error 159 Numeric data not received.
Error 163 Interface not present.
Error 164 Illegal BYTE/WORD operation.
Error 167 Interface Status Error.
Error 168 Device Timeout.
Error 170 I/O operation not allowed.
Error 171 Illegal I/O addressing sequence.
Error 172 Peripheral Error.
Error 173 Active or System Controller Required.
Error 177 Undefined I/O Path Name.
Error 183 Permission denied.
Error 186 Cannot open the specified directory.
Error 187 Cannot link across devices.
Error 188 Cannot rename with "." or "..".
Error 189 Too many open files.
Error 190 File size too big.
Error 191 Too many links to a file.
Error 193 Resource deadlock would occur.
Error 194 Operation would block.
Error 195 Too many levels of symbolic link.
Error 196 Target device busy.
Error 290 Invalid ESCAPE character

Error Codes
300 to 459
Error 330 LEXICAL ORDER IS array too small.
Error 331 Repeated subscript in REORDER vector.
Error 332 Non-existent dimension given.
Error 333 Improper subscript in REORDER vector.
Error 334 REORDER vector has wrong size.
Error 335 Indirection array is not a Vector.
Error 338 Key subscript out-of-range.
Error 340 Table Length Error.
Error 341 Order Table Lower Byte Error.
Error 342 Not a One-dimensional INTEGER Array.
Error 343 Special Case Index is Too Big.
Error 344 2-to-1 List Length Error.
Error 346 INDENT parameter out of range.
Error 347 Structures improperly matched.
Error 401 Bad system function argument.
Error 427 Priority may not be lowered.
Error 435 EXEC not allowed on this Binary.
Error 453 File in Use.
Error 455 Possibly corrupt file.
Error 456 Unsupported directory operation.
Error 459 Specified file is not a directory.

Error Codes
460 to 699
Error 460 Directory not empty.
Error 462 Invalid Password.
Error 465 Invalid rename across volumes.
Error 471 TRANSFER not supported by Interface.
Error 481 File locked or open Exclusively.
Error 482 Not allowed with a directory.
Error 485 Invalid Volume Copy.
Error 511 MAT INV result array must be REAL.
Error 543 Improper Dimensions for REDIM.
Error 602 Improper BUFFER Lifetime.
Error 603 Variable not declared BUFFER.
Error 604 Bad TRANSFER source or destination.
Error 606 Improper TRANSFER parameters.
Error 609 IVAL/DVAL result too large.
Error 611 Premature TRANSFER termination.
Error 612 BUFFER pointers in use.
Error 620 Complex value not allowed here.
Error 623 ATN is undefined at +/- i.
Error 624 ACSH/ATNH argument out of range.
Error 625 Bad SEARCH condition on Complex.

Error Codes
700 to 899
Error 700 Improper Plotter specifier.
Error 704 Upper bound not greater than lower bound.
Error 705 VIEWPORT/CLIP Beyond Hard Clip Limits.
Error 708 Device not initialized.
Error 713 Request not supported by device.
Error 730 Internal error occurred in library call.
Error 733 GESCAPE opcode not recognized.
Error 810 Feature not supported on this system.
Error 815 Cannot access system time.
Error 826 EXECUTE process status failure.
Error 827 String too long for EXECUTE.
Error 831 Write to a broken pipe.
Error 832 Cannot seek on a pipe.
Error 833 Wrong direction data transfer in pipe.
Error 841 CSUB run-time error.
Error 863 Not in a window system.
Error 898 Softkey Macro is too long.
Error 899 Key number out of range.

Error Codes
900 to 999
Error 900 Undefined softkey macro.
Error 901 Softkey Macro memory overflow.
Error 902 Must delete entire context.
Error 903 No line number room to renumber.
Error 905 CHANGEd line too long.
Error 906 SUB or DEF FN not allowed here.
Error 909 May not replace SUB or DEF FN.
Error 910 Identifier not found in context.
Error 935 Identifier too long.
Error 936 Unrecognized Character.
Error 937 Invalid OPTION BASE.
Error 940 Duplicate formal parameter name.
Error 949 Syntax error at cursor.
Error 951 Incomplete Statement or Command.
Error 956 Source/destination mismatch.
Error 962 Programmable only.
Error 963 Command only.
Error 977 Statement or Command too complex.
Error 980 Too many symbols in context.
Error 985 Invalid Quoted String.
Error 987 Invalid Line Number.

Error Codes
2000 to 2099
Error 2000Stack Overflow.
Error 2001Too many Open Files.
Error 2002HELP file not found.
Error 2003Bad Device Driver number.
Error 2004Bad Key Function number.
Error 2005Illegal in Run-only Version.
Error 2006Illegal DUMP device.
Error 2007Wrong Object Type.
Error 2008May not modify CSUB.
Error 2009Wrong Revision.
Error 2010May Not load driver Here.
Error 2011Exceeded Graphics Driver Limit.
Error 2012Illegal CALL in CSUB.

Error 1
Missing Option or Configuration Error
The operation you were attempting is not available in this version. Because of the limitations
of some computer systems, not all statements and functions are available in every version
of HTBasic. Under DOS, this error can also be caused if a file LOCK is attempted without first
installing the DOS SHARE extensions.

When porting HP BASIC programs to HTBasic, if this error occurs, check the Reference
Manual entry for more information.

Error 2
Memory Overflow
There is not enough free memory for the requested operation. The -w switch, explained in
the Installing and Using... manual, may solve the problem.

Error 3
Line not Found in Current Context
The specified program line could not be found in this context.

Error 4
Improper RETURN
A RETURN or ERROR RETURN was executed while not inside a subroutine or a user defined
function.

Error 5
Improper Context Terminator
No END statement was found for the MAIN context, SUBEND statement for a subprogram or
RETURN and FNEND statements for a user defined function.

Error 6
Improper FOR/NEXT Matching
Either FOR...NEXT loops overlap or a FOR or NEXT statement is missing.

Error 7
Undefined Function or Subprogram
The specified user defined function or subprogram is not currently in memory or could not
be found in the file.

Error 8
Improper Parameter Matching
The data type of an argument in a CALL/FN did not match the data type of the associated
parameter in the SUB/DEF FN statement.

Error 9
Improper Number of Parameters
There are either too many or too few parameters in the CALL or FNxxx statement.

Error 10
String Type Required
A numeric value was specified in a place where a string value is required.

Error 11
Numeric Type Required
A string value was specified in a place where a numeric value is required.

Error 12
Attempt to Redeclare Variable
The variable has already appeared in an ALLOCATE, DIM, REAL, INTEGER, COM, SUB or DEF
FN statement and cannot be redeclared.

Error 13
Array Dimensions not Specified
An attempt was made to use an array which is not dimensioned. Press the PRT ALL key and
try the operation again to see the names of all arrays in the program which are not
dimensioned.

Error 14
OPTION BASE not allowed here
A DIM, REAL, INTEGER, COM or OPTION BASE statement has already been processed. The
OPTION BASE statement must appear before any of these statements. Only one OPTION
BASE is allowed per context.

Error 15
Invalid bounds
The array bounds specified are not valid. The lower bound must be less than the upper
bound. Each bound must be between -32768 and 32767. The size of a dimension cannot be
larger than 32767.

Error 16
Improper or Inconsistent Dimensions
Several conditions return this error: The number of subscripts specified conflicts with the
RANK of the array. The size of a dimension cannot be larger than 32767. The dimension
specified in a function such as BASE is less than one or greater than the RANK of the array.
This array has not been declared. The number of dimensions or elements in this array are
not proper for the attempted operation.

If CONFIGURE DIM is OFF, this error also occurs if the variable has not been declared.

Error 17
Subscript out of Range
A subscript value is outside the specified dimension bounds.

Error 18
String Overflow or Sub-string Error
The string value is either too long to fit or the sub-string is incorrectly specified. An overflow
can occur when a string becomes longer than 32767, longer than the declared length of the
variable it is assigned to or when a string becomes too long for the internal buffers used in
an operation.

Error 19
Improper Value or out of Range
The specified value is not within the valid range. Consult the "Keyword Dictionary" chapter
for this operation to find the valid range of values.

Error 20
INTEGER overflow
The value calculated exceeds the range that an INTEGER variable can hold: -32768 through
+32767.

Error 22
REAL overflow
The value calculated is too big to be represented by the REAL data type. See MINREAL and
MAXREAL in the "Keyword Dictionary" chapter.

Error 24
Trig argument too large
If the argument to a trigonometric function gets too large, it can not be evaluated correctly.
If you get this error, you may wish to examine your algorithm or use range reduction.

Error 25
Magnitude of ASN or ACS > 1.
The argument to the ASN and ACS functions must be less than one.

Error 26
Zero to negative power
The number zero can only be raised to positive powers or to the zeroth power.

Error 27
Negative base to non-integer power
An attempt was made to raise a negative number to a fractional power.

Error 28
LOG or LGT of a non-positive number
The argument to the LOG and LGT functions can not be negative or zero.

Error 29
Illegal floating point number
The number encountered was not a valid REAL number.

Error 30
SQR/SQRT of a negative number
You cannot take the square root of a negative number.

Error 31
Division (or MOD) by zero
The divisor specified was zero or an operation was attempted that resulted in a division by
zero (for example, SHOW 1,1,1,1).

Error 32
String is not a valid number
The characters in the string do not represent a valid numeric value.

Error 33
Improper arg for NUM or RPT$
The resultant string must be less than 32767 characters in length, and the original string
must be greater than 0 characters in length.

Error 34
Line not an IMAGE Statement
The program line specified for the USING image was not an IMAGE statement.

Error 35
Improper IMAGE Statement
The IMAGE string or statement is zero length.

Error 36
Out of data in READ
There are no DATA statements that have not been read. Use the RESTORE statement if you
wish to re-read existing DATA statements.

Error 38
TAB or TABXY not allowed here
The tab functions are not allowed in this statement.

Error 40
Improper COPYLINES, MOVELINES or
renumber
The line numbers specified cannot be used for this operation because: the program sections
overlap, line number is not in the range 1 to 65534, the renumber increment is zero, there is
not enough room to renumber or a SUB/DEF statement is included and the destination is not
the last program line.

Error 41
First line number greater than second
In a line number range the first line number must be smaller than the second.

Error 43
Non-square Matrix
The array specified does not have the same dimension size in the first and second
dimensions, i.e., it is not "square."

Error 44
Result cannot be an operand
The result matrix is not allowed to be one of the operand matrices.

Error 46
No program in memory
There are no program lines in memory or in the range specified.

Error 47
Incorrect or inconsistent COM declarations
The COM statement specifies either a different number of variables or different dimensions
than a previous COM statement specified.

Error 49
Branch destination not Found
The ON statement branch destination specified is not defined.

Error 51
File not currently Assigned
The I/O path involved in this operation must be ASSIGNed to a file.

Error 52
Improper MSUS
The Path Specifier (formerly Mass Storage Unit Specifier) is invalid.

Error 53
Improper File Name
The file name specified contains illegal characters or is not of the proper format for this
operating system.

Error 54
Duplicate File Name
A file, directory or device, already exists with this name. If you are trying to save a program,
use the RE-SAVE or RE-STORE statements to overwrite the existing file. Use the PURGE
statement to remove the file.

Error 55
Directory Overflow
The specified mass storage device directory is full. You must either remove an existing file,
PURGE or change the size of the directory.

Error 56
File or Path not found
No file or directory exists with this name. You may have forgotten to include the proper
device or path specifiers. Use CREATE or CREATE DIR if you wish to create a new file or
directory with this name.

Error 58
Improper File Type
The file type is incorrect for the requested operation or an attempt was made to LOAD an old
revision PROG file.

Error 59
End of File or Buffer
The end-of-file or end-of-buffer was unexpectedly reached during this operation.

Error 60
End of Record
The end-of-record was unexpectedly reached during a random file operation. Either the
record size specified in the CREATE BDAT was too small, or the program is attempting to
write too much into one record.

Error 64
Mass Storage Media Overflow
The mass storage device is full. This error is also returned when accessing a device through
its operating system name (rather than an interface select code) and the device refuses to
accept output for any reason.

Error 65
Incorrect Data Type
The array data type is incorrect for this operation. Consult the "Keyword Dictionary" chapter
to see if the required type is INTEGER, REAL, or string. Some versions of HTBasic require
specific data formats for full-screen GLOADs. Refer to the Installing and Using... manual for
your version.

Error 67
Illegal Mass Storage Parameter
A mass storage parameter, such as the record number, was illegal. Record numbers start at
one, not zero.

Error 68
Syntax Error during GET
At least one of the incoming program lines has invalid syntax.

Error 72
Drive Not Found
The specified drive was not found. You must either specify a drive which is legal for your
operating system or specify an HP style volume and define a translation for it using the
CONFIGURE MSI statement.

Error 80
Disk changed or not in Drive
The disk drive is not ready. The disk drive door may be open or a disk has just been inserted
and the drive is not yet ready.

Error 82
Mass Storage unit not present
The specified device is not available. Specifying a non-existent device can cause this error.
The unit number is unknown.

Error 83
Write Protected
The disk, device, directory or file is write protected.

Error 84
Sector not Found
The disk may have been initialized in a non-standard way. If an attempt is made to use an
HP LIF disk, this error will be returned in most cases, since the disk format is different. You
must use disks which have been formatted (initialized) for your operating system (such as
DOS).

Error 85
Media not Initialized
The disk drive was not able to find any format information at all on the disk. The disk has not
been initialized or it was initialized on a system whose disk format is totally alien to your
operating system. A "General Failure" reported by a DOS device driver will also cause this
error.

Error 88
READ Data Error
The disk controller reported a READ error. This is usually caused by physical or magnetic
damage to the data recorded on the disk.

Error 89
Checkread error
A verify check of the data on the disk failed. The disk may be physically or magnetically
damaged.

Error 90
Mass storage system error
The operating system reported that it could not do the requested operation.

Error 100
Numeric IMAGE field for String Item
For example, PRINT USING "D";S$.

Error 101
String IMAGE field for Numeric Item
For example, PRINT USING "A";X.

Error 102
Numeric Field specifier is too Large
The resulting number would be too long for the internal buffers to handle.

Error 103
Data item has no corresponding IMAGE
specifier
For example, PRINT USING "X";PI.

Error 105
Numeric Field specifier is too Small
The number will not fit in the specified field width. For example, PRINT USING "D";12.

Error 106
IMAGE exponent field too Small
The exponent value will not fit in the specified field width. For example, PRINT USING
"3DEE";1E200.

Error 107
IMAGE sign specifier missing
A negative data item corresponds to an IMAGE specifier that does not include a sign
specifier. For example, PRINT USING "D";-1.

Error 117
Too many nested structures
There are too many nested program structures in the program.

Error 118
Too many structures in context
There are too many FOR/NEXT loops in the program context.

Error 120
Not allowed while program running
FIND, CHANGE, COPYLINES, MOVELINES, REN, RUN, CONT, SCRATCH, EDIT, and adding,
deleting or changing a program line are not allowed while a program is running.

Error 122
Program is not Continuable
The program must be paused to be able to continue running.

Error 128
Line too long during GET or a CHANGE
Program lines are limited to 256 characters in a LIF ASCII input file or the result of a CHANGE
makes the program line longer than 256 characters.

Error 131
Unrecognized Keycode
The specified keycode is not valid. The key pressed has not been assigned to a function or
keycodes OUTPUT to the KBD device were illegal.

Error 133
DELSUB of non-existent or busy subprogram
The specified subprogram either does not exist in memory, has been called or is specified in
an active ON statement.

Error 134
Improper Scratch Statemen
The second keyword was not A, ALL, B, BIN, C, COM, KEY, R or RECALL.

Error 136
REAL underflow
The value specified or calculated is too small to be represented by the REAL data type.
MINREAL is the smallest absolute value representable by the REAL data type.

Error 141
Variable already allocated
This variable has already been ALLOCATEd and cannot be ALLOCATEd again until it is first
DEALLOCATEd.

Error 142
Variable not Allocated
This variable has not been allocated memory space. An ALLOCATE statement must be
executed before this operation can be done.

Error 143
Reference to missing OPTIONAL Parameter
The CALL to the subprogram or function did not specify an argument for this parameter.

Error 145
May not build COM at this time
New COM blocks may not be built during a LOADSUB but must be specified in the MAIN
context or a subprogram when the program is first run.

Error 146
Duplicate Line label in this Context
Two line labels have the same name in a context. Make one a different name.

Error 150
Bad select code or device specifier
The interface select code or device specifier is invalid.

Error 153
Insufficient data for ENTER
Not enough values were found in the input data before a terminator was found.

Error 155
Improper Interface Register number
This register number is not supported by this interface or I/O path.

Error 157
No ENTER terminator found
The proper termination was not received during the ENTER. Depending on the operation,
terminators might be the line-feed character or the EOI signal. ENTER USING can be used to
accept data from sources which do not use the default terminators.

Error 158
Improper IMAGE specifier or nesting
The IMAGE specifier is either invalid or incorrectly nested. See IMAGE in the "Keyword
Dictionary" chapter for the correct syntax.

Error 159
Numeric data not received
No numeric value was found in the input data. Make sure that the device is sending ASCII
digits before it sends an EOI.

Error 163
Interface not present
There is no interface with the interface select code specified. For some interfaces, a driver
must be loaded with the LOAD BIN statement before the interface is available to HTBasic.
Consult the Installing and Using manual for more information.

Error 164
Illegal BYTE/WORD operation
The specified operation is not allowed for a BYTE or WORD value.

Error 167
Interface Status Error
An error condition has occurred on the interface, such as a UART error on a serial interface.

Error 168
Device Timeout
The device did not respond to the I/O operation within the timeout specified.

Error 170
I/O operation not allowed
An attempt was made to do an illegal operation. The following are some problems to
consider. The device may not support the operation. Or a primary address was specified and
shouldn't be. Or the operation requires the controller to be or not be active/system
controller. USING is not allowed with a LIF ASCII file. For more information, check the
"Keyword Dictionary" chapter for the statement being executed and check the
documentation for the device driver being accessed.

Error 171
Illegal I/O addressing sequence
IEEE-488 talk, listen and secondary addresses must be in the range 0 to 31.

Error 172
Peripheral Error
A hardware error occurred. Refer to the driver documentation for more information.

Error 173
Active or System Controller Required
The system must be the active or system controller for this operation.

Error 177
Undefined I/O Path Name
The I/O path name has not been ASSIGNed to a device, file or buffer.

Error 183
Permission denied
You do not have the correct permissions for the operation attempted. Common problems
are: Search permission is denied for a component of the path. You do not have read/write
permission for the file specified or for the directory the file/directory exists in. The first part
of the file is locked so an ASSIGN statement can't complete.

Error 186
Cannot open the specified directory
An error was returned by the operating system when one of the specified directories was
accessed.

Error 187
Cannot link across devices
The operating system requires that this type of LINK refer to a file that is on the same mass
storage device. If you have multiple devices and are not sure where they are mounted in the
directory tree, ask your system administrator.

Error 188
Cannot rename with "." or ".."
An attempt was made to rename "." or "..". These names are fixed and can not be renamed.

Error 189
Too many open files
The limit to the number of simultaneously open files has been reached. DOS allows this
number to be changed with the FILES=xxx line in the CONFIG.SYS boot file, however no
normal DOS process may have more than 20 open files. Error number 2001 used to be
returned by HTBasic for this condition. Now that HP BASIC has added this error, HTBasic has
been changed for compatibility.

Error 190
File size too big
The operating system has a maximum limit to the size of a file and that limit has been
exceeded.

Error 191
Too many links to a file
The link count of the file/directory would exceed the maximum allowed. Under SunOS 4.x,
see pathconf(2V).

Error 193
Resource deadlock would occur
An attempt was made to lock a system resource that would have resulted in a deadlock
situation.

Error 194
Operation would block
The device is in use. Attempting this operation at this time would suspend HTBasic.

Error 195
Too many levels of symbolic link
Too many symbolic links were encountered in translating the pathname specified.

Error 196
Target device busy
The file/directory could not be deleted or renamed because it is the mount point for a
mounted file system, is being used by another process, or is the current directory, ".".

Error 290
Invalid ESCAPE characte
The set of valid wildcard escape characters is explained in the "Keyword Dictionary" chapter
entry for WILDCARDS.

Error 330
LEXICAL ORDER IS array too small
The array specified in the LEXICAL ORDER statement must have at least 257 elements. If the
length specified in the 257th element is not zero, there must be that many more elements in
the array. Remember the OPTION BASE when figuring the number of elements.

Error 331
Repeated subscript in REORDER vector
The "MAT REORDER..BY X,D" statement requires that the subscripts specified in X be unique.

Error 332
Non-existent dimension given
The dimension specified in a BASE, SIZE or MAT REORDER statement is less than one or
greater than the RANK of the array.

Error 333
Improper subscript in REORDER vector
The "MAT REORDER..BY X,Dim" statement requires that the subscripts specified in X be legal
subscripts for the specified dimension (i.e., in range BASE(Dim) to BASE(Dim)+SIZE(Dim)-1).

Error 334
REORDER vector has wrong size
The MAT REORDER..BY X statement requires that the SIZE of X be the same as the SIZE of
the array dimension being acted upon.

Error 335
Indirection array is not a Vector
The MAT REORDER..BY X and MAT SORT...TO X statements require that X be a vector.

Error 338
Key subscript out-of-range
In a MAT SORT key, the "*" must be present in the same dimension of each sort key.

Error 340
Table Length Error
The length of the Special Case Table, stored in the 257th element of the LEXICAL ORDER
array, must be in the range zero to sixty-three.

Error 341
Order Table Lower Byte Error
In a LEXICAL ORDER array, the lower byte of the first 256 entries indicates a special case.
Legal values are explained in the User's Guide.

Error 342
Not a One-dimensional INTEGER Array
The array specified in the LEXICAL ORDER statement must be INTEGER and must have a
RANK of one.

Error 343
Special Case Index is Too Big
The index points past the end of the special case table, whose length is specified in the
257th element of the array.

Error 344
2-to-1 List Length Error
In the special case table, a 2-to-1 list must start with a length. The length gives the number
of entries in the list. You will get this error if the length is negative, zero or longer than the
special case table.

Error 346
INDENT parameter out of range
The values specified in the INDENT statement are not legal.

Error 347
Structures improperly matched
The FOR...NEXT, LOOP...END LOOP, REPEAT...UNTIL, SELECT...END SELECT, WHILE...END
WHILE, program structures are either nested improperly or there is a missing structured
statement.

Error 401
Bad system function argument
A value passed to a system function was out of range or otherwise illegal. See the "Keyword
Dictionary" chapter for this function for a description of legal values.

Error 427
Priority may not be lowered
When executing an error handling routine, the priority cannot be changed.

Error 435
EXEC not allowed on this Binary
The file is not an executable file or is corrupt.

Error 453
File in Use
The file or device is in use and this operation can not occur at this time.

Error 455
Possibly corrupt file
The executable file specified by EXECUTE is corrupt or is not an executable file. Or the file
was found to be locked in a situation where it shouldn't be. Or the operating system is no
longer recognizing the file as a valid, ASSIGNed file.

Error 456
Unsupported directory operation
The directory was specified in an illegal way, usually involving "." or "..".

Error 459
Specified file is not a directory
The specifier must refer to a directory, not a regular file. Or if the specifier includes a path,
one of the directories specified in the path is not a directory.

Error 460
Directory not empty
The directory could not be deleted because files or sub-directories still exist in it.

Error 462
Invalid Password
An HP LIF style file password was started with the "<" character but no ">" character was
found.

Error 465
Invalid rename across volumes
RENAME can not be used to move a file from one disk to another. Under UNIX, use "mount"
to see a list of mounted file systems.

Error 471
TRANSFER not supported by Interface
TRANSFER is only supported on some devices. It is not supported on CRT, KBD, parallel ports
or with files. If the device or interface is supposed to support TRANSFER, make sure the
device driver is the current revision.

Error 481
File locked or open Exclusively
The file has already been ASSIGNed by yourself or another user and the file or part of the file
is LOCKed for exclusive access. You may want to write a loop which tries the operation
several times, waiting in between for the file to be UNLOCKed. Or you may want to LOCK the
file yourself so that no one else can deny your access to it.

Error 482
Not allowed with a directory
Under DOS, a directory can not be ASSIGNed.

Error 485
Invalid Volume Copy
The reasons for this error depend on your operating system. Copying a volume may not be
supported on some systems.

Error 511
MAT INV result array must be REAL
The destination of a matrix invert operation must be a REAL array.

Error 543
Improper Dimensions for REDIM
The destination matrix could not be implicitly re-dimensioned by the MAT statement because
the RANK of the destination matrix is not the same as the number of ranges specified in the
array to the right of the equal sign.

Error 602
Improper BUFFER Lifetime
It is an error to ASSIGN an I/O Path to a BUFFER if the BUFFER can cease to exist before the
I/O Path. If the I/O Path is local, the BUFFER's lifetime will always equal or exceed the I/O
Path's. If the I/O Path is in a COM block, the BUFFER must be in the same COM. If the I/O Path
is a parameter, then the BUFFER must be in a COM block or must be a parameter also.

Error 603
Variable not declared BUFFER
The variable specified in the ASSIGN...TO BUFFER statement must be declared with the
BUFFER keyword following it in the DIM, INTEGER, REAL or COM statement. If the buffer
variable is a parameter, it must be passed with the BUFFER keyword following it in the DEF
or SUB statement.

Error 604
Bad TRANSFER source or destination
Either the source or the destination, but not both, must be a BUFFER. At the time of this
manual printing, files and pipes do not support TRANSFER.

Error 606
Improper TRANSFER parameters
One of the following problems exists in the TRANSFER statement: DELIM can not be used on
outbound transfers or if the I/O path has the WORD attribute. Or EOT was set to RECORD but
no EOR was given to define a record.

Error 609
IVAL/DVAL result too large
The value in the string represents a number which is too large for the function to convert.

Error 611
Premature TRANSFER termination
An error occurred which caused the transfer to terminate abnormally.

Error 612
BUFFER pointers in use
The buffer pointer or count couldn't be changed because of an active transfer.

Error 620
Complex value not allowed here
This function does not handle complex values.

Error 623
ATN is undefined at +/- i
The ATN function is undefined at CMPLX(0,1) and CMPLX(0,-1).

Error 624
ACSH/ATNH argument out of range
The value specified is not within the legal range for the ACSH or ATNH functions.

Error 625
Bad SEARCH condition on Complex
This search condition is not allowed for complex arrays.

Error 700
Improper Plotter specifier
This plotter specifier is not supported or this interface is not legal for graphics output.

Error 704
Upper bound not greater than lower bound
The value of the upper clipping bound specified is lower than the value of the lower clipping
bound.

Error 705
VIEWPORT/CLIP Beyond Hard Clip Limits
A value specified in the CLIP or VIEWPORT statement is too large or too small for the current
graphic device.

Error 708
Device not initialized
The device is not the current PLOTTER IS or other active graphic device.

Error 713
Request not supported by device
This device does not support the requested operation.

Error 730
Internal error occurred in library call
A UNIX library or system call returned an unexpected error.

Error 733
GESCAPE opcode not recognized
The opcode specified is not supported on this device.

Error 810
Feature not supported on this system
This feature is not included in this release of this version of HTBasic.

Error 815
Cannot access system time
The UNIX call to read the system time failed unexpectedly.

Error 826
EXECUTE process status failure
The process no longer exists and can not be killed.

Error 827
String too long for EXECUTE
Shorten the string and try again.

Error 831
Write to a broken pipe
OUTPUT on this I/O path is no longer allowed because the pipe to the process has been
broken. The process probably terminated.

Error 832
Cannot seek on a pipe
The use of a record number with this I/O path is not allowed because the path refers to a
pipe.

Error 833
Wrong direction data transfer in pipe
You can not ENTER from a pipe unless the pipe-specifier ends with the pipe character, "|".
You can not OUTPUT to a pipe unless the pipe-specifier starts with the pipe character.

Error 841
CSUB run-time error
The CSUB called at this line encountered an error. Contact the supplier of the CSUB for more
information.

Error 863
Not in a window system
This statement is not supported unless HTBasic is executing under a windowing system.

Error 898
Softkey Macro is too long
The length of the string must be less than 256 characters and there must be enough
available macro memory to store it. LIST KEY reports the current amount of available softkey
macro memory.

Error 899
Key number out of range
The specified key number is outside the legal range. See the CONFIGURE KEY statement.

Error 900
Undefined softkey macro
The key which you pressed does not presently have a softkey macro definition.

Error 901
Softkey Macro memory overflow
The available memory reserved for user defined Softkey Macro definitions is full.

Error 902
Must delete entire context
To delete a subprogram context or the SUB or FN statement of a subprogram context, all
program lines in the SUB of DEF    context must be deleted.

Error 903
No line number room to renumber
A renumber operation would create line numbers larger than 65534. (Note: The HP BASIC
limit is 32766.)

Error 905
CHANGEd line too long
The CHANGE operation could not be completed because it would have created a line which
is longer than 255 characters.

Error 906
SUB or DEF FN not allowed here
A new SUB or DEF FN must be created with a line number greater than all existing program
lines.

Error 909
May not replace SUB or DEF FN
The SUB or DEF FN line delimits a context and so the SUB or DEF FN keywords can not be
changed. Create a new context at the end of the program if necessary and use MOVELINES
to move program lines to another context.

Error 910
Identifier not found in context
The specified identifier was not found in the current context. This error can also occur if an
attempt is made to access a main context variable after adding a program line. Adding a
program line causes the values of all variables to be discarded.

Error 935
Identifier too long
An identifier may be up to 15 characters in length.

Error 936
Unrecognized Character
A character in the program line was not legal. You probably mistyped an option in the LOAD
BIN statement or that particular BIN doesn't support the option specified.

Error 937
Invalid OPTION BASE
The value specified was not zero or one.

Error 940
Duplicate formal parameter name
The parameter appears more than once in the formal parameter list.

Error 949
Syntax error at cursor
The item pointed to by the cursor is not valid in this position for this statement. See the
"Keyword Dictionary" chapter entry for the correct syntax.

Error 951
Incomplete Statement or Command
There are more required items for this statement. See the "Keyword Dictionary" chapter
entry for the correct syntax.

Error 956
Source/destination mismatch
The number of array elements do not match in the source and destination arrays.

Error 962
Programmable only
This statement may not be executed from the keyboard. It may only be stored and executed
in a program.

Error 963
Command only
This statement may be executed from the keyboard only. It may not be stored or executed in
a program.

Error 977
Statement or Command too complex
An expression in the statement is too complex. Either simplify the expression or split it into
two or more expressions.

Error 980
Too many symbols in context
There are too many variables, I/O Paths and labels in the program context. Break the
program into two or more SUBs or DEF FNs.

Error 985
Invalid Quoted String
The closing quote character is missing.

Error 987
Invalid Line Number
The program line number is outside the range of 1 through 65534. (The HP BASIC limit is
32766.)

Error 2000
Stack Overflow
The processor stack has grown beyond the available memory. This is usually caused by user
defined functions that are nested too deep.

Error 2001
Too many Open Files
HTBasic used to return 2001 for this condition. Now that HP BASIC has added error 189 for
this condition, HTBasic has been changed to return 189 for compatibility.

Error 2002
HELP file not found
The HTB.HLP file was not found in the directory specified by the environment variable
"HTB=xxx", in the current directory or in the same directory as HTB.EXE.

Error 2003
Bad Device Driver number
The CONFIGURE DEVICE statement, which returned this error, is no longer necessary and
thus this error is not currently returned by HTBasic.

Error 2004
Bad Key Function number
The key function number specified is outside the legal range. See the CONFIGURE KEY
statement.

Error 2005
Illegal in Run-only Version
This error is not currently returned by HTBasic.

Error 2006
Illegal DUMP device
This error is not currently returned by HTBasic. Error 56, "File Not Found," is returned when a
CONFIGURE DUMP specifies a language for which no device driver file exists.

Error 2007
Wrong Object Type
An attempt was made to execute object code which is not suitable for the computer's
processor. A DOS 386/486 Version CSUB or BIN can not execute with the DOS PC Version,
etc.

Error 2008
May not modify CSUB
An attempt was made to change a CSUB definition.

Error 2009
Wrong Revision
The PROG or BIN file you attempted to LOAD, LOADSUB or CAT was created with an earlier
release of HTBasic and is not compatible with the current release. For 1.x/2.x PROG files, use
the HT2SAVE utility (explained in the User's Guide or Installing and Using manual) to convert
your PROG files to the current format. This can also be done by LOADing and SAVEing the file
with the old release of HTBasic and then GETting and STOREing the file with the new
release. For old BIN files, you must contact the supplier of the BIN file for information about
upgrading.

Error 2010
May Not load driver Here
You must load all drivers from the MAIN program or as an immediate command when
HTBasic is in the Idle condition. It is recommended that PLOTTER IS, CONFIGURE DUMP and
GRAPHICS INPUT IS statements to load drivers be duplicated in the AUTOST file to insure the
proper drivers are loaded before your programs begin to execute. LOAD BIN statements
should also be executed in the AUTOST file.

Error 2011
Exceeded Graphics Driver Limit
There is a limit to the number of device drivers which can be loaded with the CONFIGURE
DUMP, GRAPHICS INPUT IS and PLOTTER IS statements. You have exceeded that limit. At the
time of this manual printing, the limit was ten. Use LIST BIN to see a list of the currently
loaded drivers.

Error 2012
Illegal CALL in CSUB
The CSUB attempted to CALL an interpreted SUB, which is not supported. Use "XREF sub-
name : SB" to list the SUBs called by sub-name. Then make sure they are compiled or that
no interpreted SUBs of the same name exist before the compiled SUBs.

Appendix B
ASCII Code Chart

Legend:
Center - ASCII Glyph or Mnemonic
Upper-left - Decimal
Upper-right - IEEE-488 Command or Address
Lower-left – Hexadecimal

ERROR
Six manual entries exist for ERROR.
See:
CAUSE ERROR Simulates a specified error.
CLEAR ERROR Resets all error indicators.
ERROR RETURN Returns program execution to the line following the most recent error.
ERROR SUBEXIT Returns subprogram execution to the line following the most recent
error.
OFF ERROR Cancels event branches defined by ON ERROR.
ON ERROR Defines an event branch for trappable errors.

KEY
Twelve manual entries exist for KEY.
See:

CONFIGURE KEY Assigns editor functions to keyboard keys.
EDIT KEY Puts you into softkey EDIT mode.
KEY LABELS Controls the display of the softkey labels.
KEY LABELS PEN Sets the color for the softkey labels.
LIST KEY Lists the softkey macro definitions.
LOAD KEY Loads softkey macro definitions into memory.
OFF KEY Cancels event branches defined by ON KEY.
ON KEY Defines an event branch for when a softkey is pressed.
SET KEY Defines one or more softkey macros.
READ KEY Returns one or more softkey macro definitions.
RE-STORE KEY Stores the KEY definitions in a file.
STORE KEY Stores the softkey definitions in a file.

CONFIGURE
Eleven manual entries exist for CONFIGURE.
See:

CONFIGURE BDAT Specifies the byte order for CREATE BDAT.
CONFIGURE CREATE Specifies the kind of file header used with typed files.
CONFIGURE DIM Turns implicit variable dimensioning on or off.
CONFIGURE DUMP Specifies what graphic printer language to use for DUMP.
CONFIGURE KBD Defines keyboard mappings for character sets.
CONFIGURE KEY Assigns editor functions to keyboard keys.
CONFIGURE LABEL Defines characters for the LABEL statement.
CONFIGURE LONGFILENAMES Specifies use of long filenames.
CONFIGURE MSI Specifies HP style volume specifier translations.
CONFIGURE PRT Specifies the value of PRT.
CONFIGURE SAVE Sets the file type produced by SAVE.

REAL
Two manual entries exist for REAL.
See:

REAL - Reserve floating point variable and and array storage.
REAL - Converts an INTEGER or COMPLEX number to REAL.

SET
Nine manual entries exist for SET.
See:

SET ALPHA MASK Determines which plane(s) can be modified by ALPHA
display operations.
SET CHR Defines the bit-patterns for one or more characters.
SET DISPLAY MASK Specifies which planes can be seen on the alpha display.
SET ECHO Sets the echo location on the PLOTTER IS device.
SET KEY Defines one or more softkey macros.
SET LOCATOR Sets a new graphic locator position on the GRAPHICS INPUT IS
device.
SET PEN Defines part or all of the color map.
SET TIME Sets the time of day clock.
SET TIMEDATESets the date and time of the computer's clock.

OFF event
Manual entries document each event separately.
See:

OFF CYCLE - Cancels a repeating event branch.
OFF DELAY - Cancels a single event branch after a specified number of
seconds.
OFF END - Cancels an event branch for end-of-file conditions.
OFF EOR - Cancels an event branch for end-of-record conditions.
OFF EOT - Cancels an event branch for end-of-transfer conditions.
OFF ERROR - Cancels an event branch for trappable errors.
OFF INTR - Cancels a hardware interrupt initiated branch.
OFF KBD - Cancels an event branch for when a key is pressed.
OFF KEY - Cancels an event branch for when a softkey is pressed.
OFF KNOB - Cancels an event branch for when the KNOB is turned.
OFF SIGNAL - Cancels an event branch for when a SIGNAL statement is
executed.
OFF TIME - Cancels a single event branch for a specific time.
OFF TIMEOUT - Cancels an event branch for an I/O timeout.

ON event
Manual entries document each event separately.
See:

ON - Transfers control to one of a list of lines.
ON CYCLE - Defines a repeating event branch.
ON DELAY - Defines a single event branch after a specified number of
seconds.
ON END - Defines an event branch for end-of-file conditions.
ON EOR - Defines an event branch for end-of-record conditions.
ON EOT - Defines an event branch for end-of-transfer conditions.
ON ERROR - Defines an event branch for trappable errors.
ON INTR - Defines a hardware interrupt initiated branch.
ON KBD - Defines an event branch for when a key is pressed.
ON KEY - Defines an event branch for when a softkey is pressed.
ON KNOB - Defines an event branch for when the KNOB is turned.
ON SIGNAL - Defines an event branch for when a SIGNAL statement is
executed.
ON TIME - Defines a single event branch for a specific time.
ON TIMEOUT - Defines an event branch for an I/O timeout.

Chapter 3
 Statement Summary

The following table lists all the HTBasic keywords and indicates
whichstatements can be executed from the keyboard, stored in a program,
and includedin an IF...THEN statement.

Letter Meaning                               
K Keyboard executable
P Programmable
I Legal in an IF...THEN

ABORT KPI
ABORTIO KPI
ABS KPI
ACS KPI
ACSH KPI
ALLOCATE KPI
ALPHA KPI
ALPHA HEIGHT KPI
ALPHA PEN KPI
AND KPI
AREA KPI
ARG KPI
ASN KPI
ASNH KPI
ASSIGN KPI
ATN KPI
ATN2 KPI
ATNH KPI
AXES KPI
BASE KPI
BEEP KPI
BINAND KPI
BINCMP KPI
BINEOR KPI
BINEQV KPI
BINIMP KPI
BINIOR KPI
BIT KPI
BREAK KPI
CALL KPI
CASE -P-
CAT KPI
CAUSE KPI
CHANGE K--
CHECKREAD KPI
CHGRP KPI
CHOWN KPI
CHR$ KPI
CHRX KPI
CHRY KPI
CINT KPI

CLEAR KPI
CLEAR ERROR -PI
CLEAR LINE KPI
CLEAR SCREEN KPI
CLIP KPI
CLS KPI
CMPLX KPI
COM -P-
COMMAND$ KPI
COMPLEX -P-
CONFIGURE KPI
CONJG KPI
CONT K--
CONTROL KPI
COPY KPI
COPYLINES K--
COS KPI
COSH KPI
CREATE KPI
CREATE ASCII KPI
CREATE BDAT KPI
CREATE DIR KPI
CRT KPI
CSIZE KPI
CSUB ---
DATA -P-
DATE KPI
DATE$ KPI
DEALLOCATE KPI
DEF FN -P-
DEG KPI
DEL K--
DELSUB KPI
DET KPI
DIGITIZE KPI
DIM -P-
DISABLE KPI
DISABLE INTR KPI
DISP KPI
DISPLAY FUNCTIONS KPI
DIV KPI
DOT KPI
DRAW KPI
DROUND KPI
DUMP KPI
DUMP DEVICE IS KPI
DVAL KPI
DVAL$ KPI
EDIT K--
EDIT KEY K--
ELSE -P-
ENABLE KPI

ENABLE INTR KPI
END -P-
ENTER KPI
ENVIRON$ KPI
ERRL -PI
ERRLN KPI
ERRM$ KPI
ERRN KPI
ERROR -PI
EXECUTE string KPI
EXIT IF -P-
EXOR KPI
EXP KPI
FIND K--
FIX KPI
FN KPI
FNEND -P-
FOR -P-
FRACT KPI
FRAME KPI
FRE KPI
GCLEAR KPI
GESCAPE KPI
GET KPI
GINIT KPI
GLOAD KPI
GOSUB -PI
GOTO -PI
GRAPHICS KPI
GRAPHICS INPUT IS KPI
GRID KPI
GSEND KPI
GSTORE KPI
HELP K--
IDRAW KPI
IF -P-
IMAG KPI
IMAGE -P-
IMOVE KPI
INDENT K--
INITIALIZE KPI
INMEM KPI
INP KPI
INPUT -PI
INPW KPI
INT KPI
INTEGER -P-
IPLOT KPI
IVAL KPI
IVAL$ KPI
KBD KPI
KBD CMODE KPI

KBD LINE PEN KPI
KBD$ KPI
KEY LABELS KPI
KEY LABELS PEN KPI
KNOBX KPI
KNOBY KPI
LABEL KPI
LDIR KPI
LEN KPI
LET KPI
LEXICAL ORDER IS KPI
LGT KPI
LINE TYPE KPI
LINK KPI
LINPUT -PI
LIST KPI
LIST BIN KPI
LIST KEY KPI
LOAD KPI
LOAD BIN KPI
LOAD KEY KPI
LOADSUB KPI
LOCAL KPI
LOCAL LOCKOUT KPI
LOCK KPI
LOG KPI
LOOP -P-
LORG KPI
LWC$ KPI
MASS STORAGE IS KPI
MAT KPI
MAT REORDER KPI
MAT SEARCH KPI
MAT SORT KPI
MAX KPI
MAXLEN KPI
MAXREAL KPI
MERGE ALPHA KPI
MIN KPI
MINREAL KPI
MOD KPI
MODULO KPI
MOVE KPI
MOVELINES K--
MSI KPI
NEXT -P-
NOT KPI
NPAR KPI
NUM KPI
ON---GOTO/GOSUB -PI
ON/OFF CDIAL -PI
ON/OFF CYCLE -PI

ON/OFF DELAY -PI
ON/OFF END -PI
ON/OFF EOR -PI
ON/OFF EOT -PI
ON/OFF ERROR -PI
ON/OFF INTR -PI
ON/OFF KBD -PI
ON/OFF KEY -PI
ON/OFF KNOB -PI
ON/OFF SIGNAL -PI
ON/OFF TIME -PI
ON/OFF TIMEOUT -PI
OPTION BASE -P-
OR KPI
OUT KPI
OUTPUT KPI
OUTW KPI
PASS CONTROL KPI
PAUSE KPI
PDIR KPI
PEN KPI
PENUP KPI
PERMIT KPI
PI KPI
PIVOT KPI
PLOT KPI
PLOTTER IS KPI
POLYGON KPI
POLYLINE KPI
POS KPI
PPOLL KPI
PRINT KPI
PRINT LABEL KPI
PRINT PEN KPI
PRINTALL IS KPI
PRINTER IS KPI
PROTECT KPI
PROUND KPI
PRT KPI
PURGE KPI
QUIT KPI
RAD KPI
RANDOMIZE KPI
RANK KPI
RATIO KPI
RE-SAVE KPI
RE-STORE KPI
RE-STORE KEY KPI
READ KPI
READ KEY KPI
READ LABEL KPI
READ LOCATOR KPI

READIO KPI
REAL -P-
REAL() KPI
RECTANGLE KPI
REDIM KPI
REM -P-
REMOTE KPI
REN K--
RENAME KPI
REPEAT -P-
REQUEST KPI
RES KP-
RESET KPI
RESTORE -PI
RESUME KPI
RETURN -PI
REV$ KPI
RND KPI
ROTATE KPI
RPLOT KPI
RPT$ KPI
RUN K--
RUNLIGHT KPI
SAVE KPI
SC KPI
SCRATCH A/ALL K--
SCRATCH B/BIN K--
SCRATCH C/COM K--
SCRATCH KEY K--
SCRATCH R/RECALL K--
SECURE K--
SELECT -P-
SEND KPI
SEPARATE ALPHA KPI
SET ALPHA MASK KPI
SET CHR KPI
SET DISPLAY MASK KPI
SET ECHO KPI
SET KEY KPI
SET LOCATOR KPI
SET PEN KPI
SET TIME KPI
SET TIMEDATE KPI
SGN KPI
SHIFT KPI
SHOW KPI
SIGNAL KPI
SIN KPI
SINH KPI
SIZE KPI
SOUND KPI
SPOLL KPI

SQR KPI
SQRT KPI
STATUS KPI
STATUS() KPI
STOP KPI
STORE KPI
STORE KEY KPI
STORE SYSTEM K--
SUB -P-
SUBEND -P-
SUBEXIT -PI
SUM KPI
SUSPEND KPI
SYMBOL KPI
SYSTEM KEYS KPI
SYSTEM PRIORITY KPI
SYSTEM$ KPI
TAN KPI
TANH KPI
TIME KPI
TIME$ KPI
TIMEDATE KPI
TIMEZONE IS KPI
TRACE KPI
TRACK KPI
TRANSFER KPI
TRIGGER KPI
TRIM$ KPI
UNLOCK KPI
UNTIL -P-
UPC$ KPI
USER KEYS KPI
VAL KPI
VAL$ KPI
VIEWPORT KPI
WAIT KPI
WAIT FOR EOR KPI
WAIT FOR EOT KPI
WHERE KPI
WHILE -P-
WILDCARDS KPI
WINDOW KPI
WRITEIO KPI
XREF K--

Default FORMAT Chart

Target ASSIGN (no
FORMAT option)

ASSIGN; FORMAT
ON

ASSIGN; FORMAT
OFF

ASSIGN; FORMAT
LSB FIRST

ASSIGN; FORMAT
MSB FIRST

Ordinary file Ordinary * Binary Ordinary ASCII Ordinary * Binary Ordinary LSB
Binary

Ordinary MSB
Binary

ASCII File LIF ASCII LIF ASCII LIF ASCII LIF ASCII LIF ASCII

BDAT File BDAT †    Binary BDAT ASCII BDAT †    Binary BDAT LSB Binary BDAT MSB Binary

Device ASCII ASCII MSB Binary LSB Binary MSB Binary

BUFFER ASCII ASCII * Binary LSB Binary MSB Binary

String ‡

† The byte order used with a BDAT file is established when thefile is created
and FORMAT OFF should be used to specifybinary data. CONFIGURE BDAT is
used to set the byte orderfor CREATE BDAT.

‡ Although you can't ASSIGN to a non-BUFFER string, you canOUTPUT/ENTER
to any string. In these cases, the format is alwaysASCII.

* The native byte order for the computer is used. Using the nativebyte order
for a computer results in faster throughput.

